Patents by Inventor Norbert Wiesheu

Norbert Wiesheu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100273079
    Abstract: The invention relates to a fuel cell drive for a motor vehicle, in particular a utility vehicle, with a fuel cell assembly (1) as an energy source and a fuel cell cooling assembly (2) for adjustably cooling the fuel cell assembly (1) in dependence on the load. The fuel cell assembly (1) comprises at least two fuel cell units (3.1, 3.2) that can be controlled independently from each with a number of fuel cells that are connected in series. The fuel cell cooling assembly (2) comprises, for each of said fuel cell units (3.1, 3.2), an individual fuel cell cooling unit (4.1, 4.2) by means of which the fuel cells of the respective fuel cell unit (3.1, 3.2) can be cooled in dependence on at least one control variable.
    Type: Application
    Filed: October 28, 2008
    Publication date: October 28, 2010
    Applicant: Daimler AG
    Inventors: Gert Hinsenkamp, Thomas Soczka-Guth, Norbert Wiesheu
  • Patent number: 7582143
    Abstract: A moisture exchange module includes a bundle of moisture-permeable hollow fiber membranes. It is provided with a feedline for supplying a gas stream that flows through the hollow fiber membranes in an inner flow. According to the present invention, a separating device for separating out liquid particles from the gas flow are provided in the region between the feedline and the bundle of hollow fiber membranes. The separating device may have the form of a groove and are arranged in such a way that the gas flow is guided in such a manner that the centrifugal force assists movement of the liquid particles towards the separating device. The moisture exchange module preferably forms part of a fuel cell system to humidify feed air for the fuel cell system.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: September 1, 2009
    Assignee: Daimler AG
    Inventors: Gerhard Berger, Gert Hinsenkamp, Jens Intorp, Patrick Mangold, Jochen Schaefer, Sven Schnetzler, Wolfgang Weger, Norbert Wiesheu
  • Patent number: 7527672
    Abstract: A moisture exchange module includes a bundle of moisture-permeable hollow fiber membranes through which a first gas stream can flow. The bundle of hollow fiber membranes is arranged in a housing, the housing being provided with line elements for supplying and discharging a second gas stream, which flows around the hollow fiber membranes. Between the bundle of hollow fiber membranes and the housing there is at least one flow space, which extends over at least approximately the entire length of that region of the bundle of hollow fiber membranes through which the first gas stream can flow. The at least one flow space surrounds only a small part of the circumference of the bundle of hollow fiber membranes, so that ultimately a moisture exchange operated in cross-current mode is formed. This can preferably be used for the humidification of feed air for fuel cell systems.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: May 5, 2009
    Assignee: Daimler AG
    Inventors: Gerhard Berger, Gert Hinsenkamp, Jens Intorp, Patrick Mangold, Jochen Schaefer, Sven Schnetzler, Wolfgang Weger, Norbert Wiesheu
  • Patent number: 7361211
    Abstract: A moisture exchange module has a bundle of moisture-permeable hollow fiber membranes and at least one line element for supplying a gas stream that flows through the hollow fibers in an inner flow. The at least one line element opens out into an inflow region, which is of at least approximately the same cross section as the bundle of hollow fiber membranes. According to the present invention, the at least one line element opens out into the inflow region at an angle of from 60° to 120° with respect to the longitudinal axis of the bundle of hollow fiber membranes without the longitudinal axes of the one line element and of the bundle of hollow fiber membranes intersecting one another. An annular diverter means for diverting the gas flow are provided between the cross section of the line elements through which gas can flow and the inflow region.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: April 22, 2008
    Assignee: Daimler AG
    Inventors: Gerhard Berger, Gert Hinsenkamp, Jens Intorp, Patrick Mangold, Jochen Schaefer, Sven Schnetzler, Wolfgang Weger, Norbert Wiesheu
  • Patent number: 7220504
    Abstract: A gas generation system includes a reservoir for a reactant, a compressor configured to pressurize the reactant in the reservoir using an operating medium delivered into the reservoir, a gas generation component fed with the reactant using a reactant feed line, and a metering element disposed in the reactant feed line between the reservoir and the gas generation component. In addition, a method for operating a gas generation system includes controlling the delivery of compressed operating medium so as to maintain a pressure in the reservoir at a level corresponding to a pressure of the reactant downstream of the reservoir and metering the reactant in a feed line between the reservoir and the gas generation component.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: May 22, 2007
    Assignee: DaimlerChrysler AG
    Inventor: Norbert Wiesheu
  • Patent number: 7148444
    Abstract: A method and a system for resistance seam welding of a foil and at least one foil support of a fuel cell system. During welding, the thin foil, together with the thicker foil support, is moved relative to the roller electrode while resting on a flat support element. In a suitable welding system, a counter-electrode is designed as a flat support element, such as a welding strip, that is displaceable relative to the roller electrode, the roller electrode being in rolling contact with the foil support, but not with the foil. Depending on whether one foil is to be welded to one or two foil frames, the support element may be designed having a high or a low specific electric resistance.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: December 12, 2006
    Assignee: DaimlerChrysler AG
    Inventors: Thomas Beisswenger, Arnold Lamm, Thomas Poschmann, Bernhard Vogel, Wolfgang Weger, Norbert Wiesheu
  • Patent number: 7056369
    Abstract: A membrane module for hydrogen separation includes a stack of flat membrane packs disposed adjacent one another so as not to exert a force on one another and a rotationally symmetrical pressure shell enclosing the stack of flat membrane packs. A feed space for a reformate gas is disposed between every two membrane packs in the stack. Each membrane pack has a pair of membrane assemblies and a support structure disposed therebetween and each membrane assembly includes a hydrogen-selective flat membrane supported by at least one membrane frame.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: June 6, 2006
    Assignee: DaimlerChrysler AG
    Inventors: Thomas Beisswenger, Gerhard Berger, Thomas Poschmann, Karsten Reiners, Wolfgang Weger, Norbert Wiesheu
  • Patent number: 7025941
    Abstract: A reactor system for reacting a hydrocarbon or hydrocarbon derivative charging material comprises a catalyst-coated reaction chamber, to which a reaction educt stream can be fed through a reaction chamber inlet, and electric heating means. The reaction chamber inlet has a flat, electrically heatable, catalyst-coated, and reaction educt stream-permeable heater, which covers at least partially the inlet cross section of the reaction chamber inlet and through which the educts for reacting the charging material can be fed at least in a start operating phase of the reactor system. An electric heater may be provided in front of the reaction chamber inlet, for the purpose of heating at least one reaction educt in a start operating phase and there are means for point-by-point injection of at least one reaction educt, heated in the heater, into the reaction chamber.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: April 11, 2006
    Assignee: DaimlerChrysler AG
    Inventors: Rainer Autenrieth, Andreas Docter, Norbert Wiesheu
  • Publication number: 20050247200
    Abstract: In an exemplary embodiment of the present invention, a moisture exchange module comprises a moisture-permeable hollow fiber membrane shell space with a bundle of moisture-permeable hollow fiber membranes being arranged in the shell space for receiving a first gas stream. A conduit member is coupled to the shell space for supplying a second gas stream for flow around the hollow fibers. Pursuant to a feature of the exemplary embodiment of the present invention, a mechanism is arranged and configured in the conduit member to produce a swirling motion in the second gas stream.
    Type: Application
    Filed: May 4, 2005
    Publication date: November 10, 2005
    Applicant: DaimlerChrysler AG
    Inventors: Gerhard Berger, Gert Hinsenkamp, Jens Intorp, Patrick Mangold, Jochen Schaefer, Sven Schnetzler, Wolfgang Weger, Norbert Wiesheu
  • Publication number: 20050247619
    Abstract: A moisture exchange module includes a bundle of moisture-permeable hollow fibre membranes. It is provided with a feedline for supplying a gas stream that flows through the hollow fibre membranes in an inner flow. According to the present invention, a separating device for separating out liquid particles from the gas flow are provided in the region between the feedline and the bundle of hollow fibre membranes. The separating device may have the form of a groove and are arranged in such a way that the gas flow is guided in such a manner that the centrifugal force assists movement of the liquid particles towards the separating device. The moisture exchange module preferably forms part of a fuel cell system to humidify feed air for the fuel cell system.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 10, 2005
    Applicant: DaimlerChrysler AG
    Inventors: Gerhard Berger, Gert Hinsenkamp, Jens Intorp, Patrick Mangold, Jochen Schaefer, Sven Schnetzler, Wolfgang Weger, Norbert Wiesheu
  • Publication number: 20050247618
    Abstract: A moisture exchange module has a bundle of moisture-permeable hollow fibre membranes and at least one line element for supplying a gas stream that flows through the hollow fibres in an inner flow. The at least one line element opens out into an inflow region, which is of at least approximately the same cross section as the bundle of hollow fibre membranes. According to the present invention, the at least one line element opens out into the inflow region at an angle of from 60° to 120° with respect to the longitudinal axis of the bundle of hollow fibre membranes without the longitudinal axes of the one line element and of the bundle of hollow fibre membranes intersecting one another. An annular diverter means for diverting the gas flow are provided between the cross section of the line elements through which gas can flow and the inflow region.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 10, 2005
    Applicant: DaimlerChrysler AG
    Inventors: Gerhard Berger, Gert Hinsenkamp, Jens Intorp, Patrick Mangold, Jochen Schaefer, Sven Schnetzler, Wolfgang Weger, Norbert Wiesheu
  • Publication number: 20050241482
    Abstract: A moisture exchange module includes a bundle of moisture-permeable hollow fibre membranes through which a first gas stream can flow. The bundle of hollow fibre membranes is arranged in a housing, the housing being provided with line elements for supplying and discharging a second gas stream, which flows around the hollow fibre membranes. Between the bundle of hollow fibre membranes and the housing there is at least one flow space, which extends over at least approximately the entire length of that region of the bundle of hollow fibre membranes through which the first gas stream can flow. The at least one flow space surrounds only a small part of the circumference of the bundle of hollow fibre membranes, so that ultimately a moisture exchange operated in cross-current mode is formed. This can preferably be used for the humidification of feed air for fuel cell systems.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 3, 2005
    Applicant: DaimlerChrysler AG
    Inventors: Gerhard Berger, Gert Hinsenkamp, Jens Intorp, Patrick Mangold, Jochen Schaefer, Sven Schnetzler, Wolfgang Weger, Norbert Wiesheu
  • Publication number: 20040226919
    Abstract: A method and a system for resistance seam welding of a foil and at least one foil support of a fuel cell system. During welding, the thin foil, together with the thicker foil support, is moved relative to the roller electrode while resting on a flat support element. In a suitable welding system, a counter-electrode is designed as a flat support element, such as a welding strip, that is displaceable relative to the roller electrode, the roller electrode being in rolling contact with the foil support, but not with the foil. Depending on whether one foil is to be welded to one or two foil frames, the support element may be designed having a high or a low specific electric resistance.
    Type: Application
    Filed: February 12, 2004
    Publication date: November 18, 2004
    Applicant: DaimlerChrysler AG
    Inventors: Thomas Beisswenger, Arnold Lamm, Thomas Poschmann, Bernhard Vogel, Wolfgang Weger, Norbert Wiesheu
  • Patent number: 6810658
    Abstract: An exhaust-gas purification installation for purifying exhaust gas from an internal combustion engine includes an exhaust-gas catalytic converter which is arranged in an exhaust pipe of the internal combustion engine and a catalytic fuel reformer for generating a hydrogen-containing reformer gas which can be fed to the exhaust pipe on an entry side of the exhaust-gas catalytic converter. It is possible for a hydrocarbon-containing fuel, which can be used to operate the internal combustion engine, to be fed to the fuel reformer in order to generate the reformer gas. An exhaust-gas heater can heat the exhaust-gas part-stream which is fed to the fuel reformer. In a method according to the invention, an exhaust-gas part-stream which is removed from the exhaust pipe is heated and fed to the fuel reformer.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: November 2, 2004
    Assignee: DaimlerChrysler Ag
    Inventors: Andreas Kaupert, Joerg Strauhs, Norbert Wiesheu
  • Patent number: 6797022
    Abstract: The invention relates to an autothermic reforming reactor, comprising an endothermic reaction zone, in which the reforming reaction takes place; an exothermic reaction zone, in which the energy is released which is required for the reforming reaction; a quench zone connected downstream of the reaction zones for the rapid cooling of the reactor gas volume flow. According to the invention, the endothermic reaction zone and the quench zone are separated by a gas permeable heat shield (HS), whereby the heat shield (HS) comprises thermal insulation (IS) for thermally insulating the endothermic reaction zone and quench zone, in addition to a thermal radiator (STR) which faces the endothermic reaction zone and radiates the thermal energy which has been absorbed from the reactor gas volume flow.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: September 28, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Andreas Docter, Uli Roeltgen, Norbert Wiesheu
  • Publication number: 20040161645
    Abstract: A method for controlling a fuel cell system that has a high-pressure gas generating system so as to avoid mechanical damage to a fuel cell. In the event of a malfunction of a diaphragm of a reformer unit, the differential pressure between the side of the diaphragm of the reformer unit facing the anode side and the cathode side of the fuel cell module is held below a predefined value. In addition fuel cell systems are provided for holding the differential pressure may contain a pressure relief valve, which may be controlled by a sensor, a bursting disk, or a flow resistance, or another controllable valve on the low-pressure side upstream from the anode side of fuel cell unit.
    Type: Application
    Filed: February 12, 2004
    Publication date: August 19, 2004
    Applicant: DaimlerChrysler AG
    Inventors: Thomas Poschmann, Norbert Wiesheu
  • Patent number: 6759153
    Abstract: Fuel cell system comprising at least one fuel cell which includes an anode compartment and a cathode compartment which are separated from one another by a proton-conducting membrane, further comprising a cathode feeder for delivering oxygen-containing gas to the cathode compartment, an anode feeder for delivering a liquid coolant/fuel mixture to the anode compartment, the anode compartment being disposed in an anode circuit which comprises a gas separator and a pump, and cooling of the coolant/fuel mixture circulating in the anode circuit is effected by the fuel cell which is designed for operation involving water break-through from the anode compartment into the cathode compartment. The evaporation cooling thus achieved in the fuel cell results in cooling of the coolant/fuel mixture at a steady-state operating temperature which is established in the fuel cell as a function of the membrane properties and the speed of the pump, thus obviating the need for any additional cooler in the anode circuit itself.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: July 6, 2004
    Assignees: Ballard Power Systems AG, Ballard Power Systems Inc.
    Inventors: Arnold Lamm, Jens Müller, Norbert Wiesheu
  • Publication number: 20040081593
    Abstract: A reactor system for producing hydrogen from a hydrocarbon or hydrocarbon derivative using autothermal reformation includes a mixture formation chamber, an autothermal reactor, and a temperature-regulated start-up burner. The start-up burner combusts the hydrocarbon or the hydrocarbon derivative with air so as to heat the mixture formation chamber and/or the autothermal reactor to a respective operating temperature. An air supply is metered to the start-up burner so as to regulate the temperature of hot gas coming out of the start-up burner to a value near or below a deterioration temperature of the catalyst material, before the hot gas contacts the mixture formation chamber and/or the autothermal reactor.
    Type: Application
    Filed: August 18, 2003
    Publication date: April 29, 2004
    Applicant: DaimlerChrysler AG
    Inventors: Andreas Docter, Marc Sommer, Norbert Wiesheu
  • Patent number: 6719041
    Abstract: A heat exchanger system for a device for autothermal reforming of a hydrocarbon having a reaction zone fed with at least two fluids which react with one another, the reaction zone being at a higher temperature level than an environment of the device and at least one of the fluids being heated by the reaction products effluent from the reaction zone. The heat exchanger system includes tubes for transporting the effluent reaction products, at least one section of the tubes being arranged essentially parallel to a center axis of the reaction zone and led through the flow path of the fluid to be heated. At least sections of the flow path are curved helically or spirally around the center axis so that the fluid to be heated impinges on and passes around the tubes containing the effluent reaction products essentially perpendicularly.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: April 13, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Andreas Docter, Norbert Wiesheu
  • Publication number: 20040003720
    Abstract: A membrane module for hydrogen separation includes a stack of flat membrane packs disposed adjacent one another so as not to exert a force on one another and a rotationally symmetrical pressure shell enclosing the stack of flat membrane packs. A feed space for a reformate gas is disposed between every two membrane packs in the stack. Each membrane pack has a pair of membrane assemblies and a support structure disposed therebetween and each membrane assembly includes a hydrogen-selective flat membrane supported by at least one membrane frame.
    Type: Application
    Filed: July 3, 2003
    Publication date: January 8, 2004
    Applicant: DaimlerChrysler AG
    Inventors: Thomas Beisswenger, Gerhard Berger, Thomas Poschmann, Karsten Reiners, Wolfgang Weger, Norbert Wiesheu