Patents by Inventor Noriaki Itagaki

Noriaki Itagaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10065972
    Abstract: The present invention provides a novel bicyclic or tricyclic heterocyclic compound represented by the formula (I) wherein ring A is an optionally substituted aromatic group, one of X1 and X2 is a carbon atom, and the other is a nitrogen atom, X3 is a nitrogen atom, or CR2, X4 is a nitrogen atom, or CR3, X5 is a sulfur atom, or —CH?CH—, Z1 is an oxygen atom, —C(R6)(R7)—, —NH—, —C(R6)(R7)—NH—, —NH—C(R6)(R7)—, —C(R6)(R7)—O—, —O—C(R6)(R7)—, or a single bond, one of Z2 and Z3 is CH and the other is a nitrogen atom, or both are nitrogen atoms, and other symbols are as defined in the DESCRIPTION, or a pharmacologically acceptable salt thereof.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: September 4, 2018
    Assignee: MITSUBISHI TANABE PHARMA CORPORATION
    Inventors: Masahiro Okuyama, Kenji Fukunaga, Kenji Usui, Norimitsu Hayashi, Daisuke Iijima, Hideki Horiuchi, Noriaki Itagaki
  • Publication number: 20160376289
    Abstract: The present invention provides a novel bicyclic or tricyclic heterocyclic compound represented by the formula (I) wherein ring A is an optionally substituted aromatic group, one of X1 and X2 is a carbon atom, and the other is a nitrogen atom, X3 is a nitrogen atom, or CR2, X4 is a nitrogen atom, or CR3, X5 is a sulfur atom, or —CH?CH—, Z1 is an oxygen atom, —C(R6)(R7)—, —NH—, —C(R6)(R7)—NH—, —NH—C(R6)(R7)—, —C(R6)(R7)—O—, —O—C(R6)(R7)—, or a single bond, one of Z2 and Z3 is CH and the other is a nitrogen atom, or both are nitrogen atoms, and other symbols are as defined in the DESCRIPTION, or a pharmacologically acceptable salt thereof.
    Type: Application
    Filed: April 22, 2015
    Publication date: December 29, 2016
    Applicant: MITSUBISHI TANABE PHARMA CORPORATION
    Inventors: Masahiro OKUYAMA, Kenji FUKUNAGA, Kenji USUI, Norimitsu HAYASHI, Daisuke IIJIMA, Hideki HORIUCHI, Noriaki ITAGAKI
  • Patent number: 8116938
    Abstract: A first observer gain of an actual damping force estimating observer 21 calculates a dynamic characteristic compensating signal, and a second observer gain of an actual vehicle model state amount estimating observer 23 calculates a vehicle model compensating signal, from an output deviation corresponding to a difference between a sprung speed (observation output) provided from a vehicle 2 and an estimated sprung speed (estimated observation output) provided from a vehicle approximation model of the actual vehicle model state amount estimating observer 23. The dynamic characteristic compensating signal is input into a dynamic characteristic providing unit of the actual vehicle model state amount estimating observer 23, and is used for adjustment of the setting of the dynamic characteristic providing unit. Therefore, it is possible to curb time lag occurrence in a control, and thereby perform a vibration control with improved accuracy.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: February 14, 2012
    Assignees: Hitachi Automotive Systems, Ltd., Kobe University
    Inventors: Noriaki Itagaki, Nobuyuki Ichimaru, Takahide Kobayashi, Tatsuya Gankai, Takanori Fukao
  • Patent number: 8086377
    Abstract: The present invention provides a suspension control apparatus capable of an excellent vibration control by a model thereof designed to incorporate nonlinearity and a time-lag element of a control damper. The present invention employs the backstepping method which is one of nonlinear control methods, and is designed so as to incorporate the nonlinearity of a damper 4. In addition, a nonlinear controller 5 uses a damping force Fu obtained by expressing the dynamics of a damping force characteristic variable portion [damping force Fu(v, i)] by a first-order lag system, so as to compensate the dynamics of the damper 4, whereby a control system is formed so as to incorporate the time-lag element of the control damper. As a result, it is possible to reduce time lag, and to practically adjust a control force according to the characteristics of the control damper.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: December 27, 2011
    Assignees: Hitachi, Ltd., Kobe University
    Inventors: Noriaki Itagaki, Nobuyuki Ichimaru, Takahide Kobayashi, Tatsuya Gankai, Takanori Fukao
  • Publication number: 20100057297
    Abstract: A first observer gain of an actual damping force estimating observer 21 calculates a dynamic characteristic compensating signal, and a second observer gain of an actual vehicle model state amount estimating observer 23 calculates a vehicle model compensating signal, from an output deviation corresponding to a difference between a sprung speed (observation output) provided from a vehicle 2 and an estimated sprung speed (estimated observation output) provided from a vehicle approximation model of the actual vehicle model state amount estimating observer 23. The dynamic characteristic compensating signal is input into a dynamic characteristic providing unit of the actual vehicle model state amount estimating observer 23, and is used for adjustment of the setting of the dynamic characteristic providing unit. Therefore, it is possible to curb time lag occurrence in a control, and thereby perform a vibration control with improved accuracy.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 4, 2010
    Inventors: Noriaki ITAGAKI, Nobuyuki Ichimaru, Takahide Kobayashi, Tatsuya Gankai, Takanori Fukao
  • Publication number: 20090292419
    Abstract: The present invention provides a suspension control apparatus capable of an excellent vibration control by a model thereof designed to incorporate nonlinearity and a time-lag element of a control damper. The present invention employs the backstepping method which is one of nonlinear control methods, and is designed so as to incorporate the nonlinearity of a damper 4. In addition, a nonlinear controller 5 uses a damping force Fu obtained by expressing the dynamics of a damping force characteristic variable portion [damping force Fu(v, i)] by a first-order lag system, so as to compensate the dynamics of the damper 4, whereby a control system is formed so as to incorporate the time-lag element of the control damper. As a result, it is possible to reduce time lag, and to practically adjust a control force according to the characteristics of the control damper.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 26, 2009
    Inventors: Noriaki ITAGAKI, Nobuyuki ICHIMARU, Takahide KOBAYASHI, Tatsuya GANKAI, Takanori FUKAO