Patents by Inventor Noriaki Kosaka

Noriaki Kosaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230203615
    Abstract: A steel sheet has a specified chemical composition and a specified steel microstructure. An average grain size of ferrite and/or bainitic ferrite is 7.0 ?m or less. On the basis of a distribution in the width direction of the steel sheet, a ratio of a deviation of the grain size of the ferrite and/or the bainitic ferrite to the average grain size of the ferrite and/or the bainitic ferrite is 10% or less. On the basis of a distribution in the width direction of the steel sheet, a ratio of a deviation of the area fraction of as-quenched martensite to the area fraction of the as-quenched martensite is 10% or less. On the basis of a distribution in the width direction of the steel sheet, a ratio of a deviation of the area fraction of retained austenite to the area fraction of the retained austenite is 10% or less.
    Type: Application
    Filed: April 28, 2021
    Publication date: June 29, 2023
    Applicant: JFE Steel Corporation
    Inventors: Tadachika Chiba, Shinjiro Kaneko, Yoichiro Matsui, Noriaki Kosaka
  • Patent number: 10202667
    Abstract: There is provided a high strength hot rolled steel sheet having a composition comprising C: 0.040% to 0.100%, by mass %, Si: 0.50% or less, by mass %, Mn: 1.00% to 2.00%, by mass %, P: 0.03% or less, by mass %, S: 0.006% or less, by mass %, Al: 0.08% or less, by mass %, N: 0.0080% or less, by mass %, Ti: 0.14% to 0.22%, by mass %, and Fe and incidental impurities, and a method for making the same. The high strength hot rolled steel sheet includes a microstructure in which a primary phase is a ferrite phase and fine carbides containing Ti are dispersion-precipitated.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: February 12, 2019
    Assignee: JFE STEEL CORPORATION
    Inventors: Noriaki Kosaka, Satoshi Tsutsumi, Takayuki Murata, Motohiko Urabe
  • Patent number: 9657380
    Abstract: A slab has a steel composition including 0.020% to 0.065% of C, 0.1% or less of Si, 0.40% to less than 0.80% of Mn, 0.030% or less of P, 0.005% or less of S, 0.08% to 0.16% of Ti, 0.005% to 0.1% of Al, 0.005% or less of N, and the balance being Fe and incidental impurities, in which Ti*(=Ti?(48/14)×N) satisfies [Ti*?0.08] and [0.300?C/Ti*?0.375], is subjected to hot rolling to obtain a hot-rolled steel sheet in which the steel microstructure includes, in terms of area fraction, 95% or more of a ferrite phase; the average ferrite grain size is 10 ?m or less; the average grain size of Ti carbides precipitated in steel is 10 nm or less; and Ti in the amount of 80% or more of Ti* is precipitated as Ti carbides.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: May 23, 2017
    Assignee: JFE Steel Corporation
    Inventors: Noriaki Kosaka, Kazuhiro Seto, Hidetaka Kawabe
  • Patent number: 9534271
    Abstract: A semi-manufactured steel material has a chemical composition including, by mass %, C: 0.055% to 0.15%, Si: not more than 0.2%, Mn: not more than 1.3%, P: not more than 0.03%, S: not more than 0.007%, Al: not more than 0.1%, N: not more than 0.01%, and Ti: 0.14% to 0.30%, the balance comprising Fe and inevitable impurities. In the composition, 1.0?([C]/12)/([Ti*]/48) is satisfied ([C], [S], [N] and [Ti]: contents (mass %) of the respective elements, and [Ti*]=[Ti]?3.4×[N]?1.5×[S]), and the contents of niobium and boron as impurities are limited to Nb: less than 0.03% and B: less than 0.0005%.
    Type: Grant
    Filed: December 25, 2012
    Date of Patent: January 3, 2017
    Assignee: JFE Steel Corporation
    Inventors: Noriaki Kosaka, Yoshimasa Funakawa, Masato Shigemi, Hidekazu Ookubo, Tokunori Kanemura
  • Publication number: 20160138126
    Abstract: There is provided a high strength hot rolled steel sheet having a composition comprising C: 0.040% to 0.100%, by mass %, Si: 0.50% or less, by mass %, Mn: 1.00% to 2.00%, by mass %, P: 0.03% or less, by mass %, S: 0.006% or less, by mass %, Al: 0.08% or less, by mass %, N: 0.0080% or less, by mass %, Ti: 0.14% to 0.22%, by mass %, and Fe and incidental impurities, and a method for making the same. The high strength hot rolled steel sheet includes a microstructure in which a primary phase is a ferrite phase and fine carbides containing Ti are dispersion-precipitated.
    Type: Application
    Filed: June 25, 2014
    Publication date: May 19, 2016
    Applicant: JFE STEEL CORPORATION
    Inventors: Noriaki KOSAKA, Satoshi TSUTSUMI, Takayuki MURATA, Motohiko URABE
  • Publication number: 20150101717
    Abstract: A slab has a steel composition including 0.020% to 0.065% of C, 0.1% or less of Si, 0.40% to less than 0.80% of Mn, 0.030% or less of P, 0.005% or less of S, 0.08% to 0.16% of Ti, 0.005% to 0.1% of Al, 0.005% or less of N, and the balance being Fe and incidental impurities, in which Ti*(=Ti?(48/14)×N) satisfies [Ti*?0.08] and [0.300?C/Ti*?0.375], is subjected to hot rolling to obtain a hot-rolled steel sheet in which the steel microstructure includes, in terms of area fraction, 95% or more of a ferrite phase; the average ferrite grain size is 10 ?m or less; the average grain size of Ti carbides precipitated in steel is 10 nm or less; and Ti in the amount of 80% or more of Ti* is precipitated as Ti carbides.
    Type: Application
    Filed: April 26, 2012
    Publication date: April 16, 2015
    Applicant: JFE STEEL CORPORATION
    Inventors: Noriaki Kosaka, Kazuhiro Seto, Hidetaka Kawabe
  • Publication number: 20150030880
    Abstract: The present invention provides a high-strength hot-rolled steel sheet having both excellent strength and excellent workability (particularly, bending workability), and a method of producing the same. The steel sheet of the present invention has a certain composition as well as microstructures such that an area ratio of ferrite phase is 95% or more, an average grain size of the ferrite phase is 8 ?m or less, and carbides in grains of the ferrite phase have an average particle size of less than 10 nm. The steel sheet of the present invention also has a tensile strength of 980 MPa or more.
    Type: Application
    Filed: January 21, 2013
    Publication date: January 29, 2015
    Applicant: JEF STEEL CORPORATION
    Inventors: Noriaki Kosaka, Yoshimasa Funakawa, Masato Shigemi, Hidekazu Ookubo, Tokunori Kanemura
  • Publication number: 20150030879
    Abstract: A semi-manufactured steel material has a chemical composition including, by mass %, C: 0.055% to 0.15%, Si: not more than 0.2%, Mn: not more than 1.3%, P: not more than 0.03%, S: not more than 0.007%, Al: not more than 0.1%, N: not more than 0.01%, and Ti: 0.14% to 0.30%, the balance comprising Fe and inevitable impurities. In the composition, 1.0 ([C]/12)/([Ti*]/48) is satisfied ([C], [S], [N] and [Ti]: contents (mass %) of the respective elements, and [Ti*]=[Ti]?3.4×[N]?1.5×[S]), and the contents of niobium and boron as impurities are limited to Nb: less than 0.03% and B: less than 0.0005%.
    Type: Application
    Filed: December 25, 2012
    Publication date: January 29, 2015
    Inventors: Noriaki Kosaka, Yoshimasa Funakawa, Masato Shigemi, Hidekazu Ookubo, Tokunori Kanemura
  • Publication number: 20140141280
    Abstract: Provided is a high-strength steel sheet having good warm press formability and excellent strength and ductility after warm press forming, and a method for manufacturing such. The high-strength steel sheet has a tensile strength at room temperature not less than 780 MPa, a yield stress at a heating temperature range of 400° C. to 700° C. not more than 80% of the yield stress at room temperature, total elongation at the heating temperature range not less than 1.1 times the total elongation at room temperature, yield stress and total elongation after the steel sheet is heated to the heating temperature range, subjected to a strain of not more than 20%, and cooled from the heating temperature to room temperature, not less than 70% of the yield stress and total elongation, respectively, at room temperature before the heating.
    Type: Application
    Filed: July 11, 2012
    Publication date: May 22, 2014
    Applicant: JFE Steel Corporation
    Inventors: Noriaki Kosaka, Yoshimasa Funakawa, Masato Shigemi, Hidekazu Okubo