Patents by Inventor Norihito Hanai

Norihito Hanai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11149705
    Abstract: An engine controller includes an ignition timing control unit and a rich imbalance determining unit. The rich imbalance determining unit designates one of multiple cylinders as a subject cylinder for determination and executes lean active control that commands a smaller amount of fuel injection for the subject cylinder than for the other cylinders. The rich imbalance determining unit determines whether an air-fuel ratio of the subject cylinder deviates to be richer based on a rotational fluctuation amount of a crankshaft during the execution of the lean active control. The ignition timing control unit executes an advancement limiting process that limits advancement of the ignition timing by the knock control during the execution of the lean active control.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: October 19, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihito Hanai, Takayuki Hosogi, Kenji Senda, Rihito Kaneko, Masaaki Yamaguchi
  • Publication number: 20210033059
    Abstract: An engine controller includes an ignition timing control unit and a rich imbalance determining unit. The rich imbalance determining unit designates one of multiple cylinders as a subject cylinder for determination and executes lean active control that commands a smaller amount of fuel injection for the subject cylinder than for the other cylinders. The rich imbalance determining unit determines whether an air-fuel ratio of the subject cylinder deviates to be richer based on a rotational fluctuation amount of a crankshaft during the execution of the lean active control. The ignition timing control unit executes an advancement limiting process that limits advancement of the ignition timing by the knock control during the execution of the lean active control.
    Type: Application
    Filed: June 29, 2020
    Publication date: February 4, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norihito HANAI, Takayuki HOSOGI, Kenji SENDA, Rihito KANEKO, Masaaki YAMAGUCHI
  • Patent number: 10851757
    Abstract: A CPU advances ignition timing within a range in which knocking can be suppressed by feedback control based on an output signal of a knocking sensor. The CPU sets the igniting timing based on a feedback adjustment amount and a learning value. The CPU limits timing advancing update of the learning value when an exhaust pressure is higher than or equal to a threshold.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: December 1, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki Hosogi, Rihito Kaneko, Kenji Senda, Norihito Hanai, Hisayuki Ito, Masaaki Yamaguchi
  • Publication number: 20200032762
    Abstract: A CPU advances ignition timing within a range in which knocking can be suppressed by feedback control based on an output signal of a knocking sensor. The CPU sets the igniting timing based on a feedback adjustment amount and a learning value. The CPU limits timing advancing update of the learning value when an exhaust pressure is higher than or equal to a threshold.
    Type: Application
    Filed: June 18, 2019
    Publication date: January 30, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki HOSOGI, Rihito KANEKO, Kenji SENDA, Norihito HANAI, Hisayuki ITO, Masaaki YAMAGUCHI
  • Patent number: 10450982
    Abstract: A control device for an internal combustion engine includes an electronic control unit configured to determine whether or not cylinder-specific air-fuel ratio processing is being executed in which an air-fuel ratio of at least one of a plurality of cylinders is controlled to be a rich air-fuel ratio and an air-fuel ratio of at least one of the other cylinders is controlled to be a lean air-fuel ratio. The electronic control unit updates a first learning value in which a result of comparison between a knock strength of the internal combustion engine and a first determination value is reflected when the cylinder-specific air-fuel ratio processing is not being executed. The electronic control unit prohibits updating of the first learning value and calculates a target ignition timing of the internal combustion engine based on the first learning value when the cylinder-specific air-fuel ratio processing is being executed.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: October 22, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshiyuki Shogenji, Keiichi Myojo, Misako Ban, Yuki Nose, Eiji Ikuta, Norihito Hanai
  • Publication number: 20190017451
    Abstract: An ignition timing control apparatus for an internal combustion engine includes an electronic control unit configured to i) perform determination as to whether knocking has occurred in the engine; ii) update a first learning value and a second learning value such that the ignition timing is retarded when determining that knocking has occurred; and iii) derive, as a required ignition timing, a timing obtained by retarding a base ignition timing based on the first and second learning values. The electronic control unit is configured to update the second learning value within a range in which an update amount of the second learning value within a prescribed period set in advance does not exceed a prescribed amount, when updating the second learning value.
    Type: Application
    Filed: July 10, 2018
    Publication date: January 17, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji SENDA, Rihito KANEKO, Masaya SUNAGO, Takayuki HOSOGI, Norihito HANAI, Hisayuki ITO, Masaaki YAMAGUCHI
  • Publication number: 20180313287
    Abstract: A control device for an internal combustion engine includes an electronic control unit configured to determine whether or not cylinder-specific air-fuel ratio processing is being executed in which an air-fuel ratio of at least one of a plurality of cylinders is controlled to be a rich air-fuel ratio and an air-fuel ratio of at least one of the other cylinders is controlled to be a lean air-fuel ratio. The electronic control unit updates a first learning value in which a result of comparison between a knock strength of the internal combustion engine and a first determination value is reflected when the cylinder-specific air-fuel ratio processing is not being executed. The electronic control unit prohibits updating of the first learning value and calculates a target ignition timing of the internal combustion engine based on the first learning value when the cylinder-specific air-fuel ratio processing is being executed.
    Type: Application
    Filed: April 16, 2018
    Publication date: November 1, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshiyuki SHOGENJI, Keiichi MYOJO, Misako BAN, Yuki NOSE, Eiji IKUTA, Norihito HANAI
  • Publication number: 20170037787
    Abstract: An engine includes a variable valve mechanism capable of holding a valve timing of an intake valve in an intermediate phase when the engine is started. An ECU calculates a degree of deposit adhesion in a combustion chamber, and calculates a deposit correction amount that is a retard correction amount for an ignition timing set in accordance with the calculated degree of the deposit adhesion. The ECU calculates a first correction amount that is a first adaptive value for the retard correction amount for the ignition timing in a reference phase of the valve timing and a second correction amount that is a second adaptive value for the retard correction amount for the ignition timing in an adaptation phase of the valve timing. The deposit correction amount is set based on the first correction amount and the second correction amount.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 9, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoshi WATANABE, Isao TAKAGI, Masaya SUNAGO, Shoichi AKIYAMA, Kenji SENDA, Norihito HANAI, Hisayuki ITO
  • Patent number: 8302462
    Abstract: An engine ECU executes operations including: extracting vibration intensities of a plurality of frequency bands from vibration detected by a knock sensor, multiplying the extracted vibration intensity of each frequency band by a weight coefficient and adding the results in correspondence with crank angles to calculate integrated values of every five degrees; calculating a coefficient of correlation based on a result of comparison between a vibration waveform of a frequency band and a knock waveform model prepared in advance; calculating a knock intensity; determining occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity; and determining no occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: November 6, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuichi Takemura
  • Patent number: 8301360
    Abstract: An output signal of a knock sensor is filtered with a plurality of band-pass filters to extract vibration waveform components of a plurality of frequency bands (f1-f4). Weighting coefficients (G1-G4) which multiply the vibration waveform component of each frequency band are established in such a manner as to be a small value as a noise intensity of each frequency band becomes larger. Thereby, the vibration waveform component of a plurality of frequency bands is synthesized by weighting according to an influence of a noise intensity of each frequency band. Even when the noise is superimposed on the vibration waveform component of any of the frequency bands, it becomes possible to reduce the influence of the noise and to synthesize the vibration waveform component of each frequency band, and an accurate knock determination can be performed based on the composite vibration waveform.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: October 30, 2012
    Assignees: Denso Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Satoshi Masuda, Rihito Kaneko, Satoshi Watanabe, Hiroto Tanaka, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako
  • Patent number: 8205489
    Abstract: An engine ECU executes a program including: detecting a magnitude of vibration of an engine; detecting a vibration waveform of the engine based on the magnitude; calculating a correlation coefficient, in the case where the engine speed is smaller than a threshold value, using the sum of values each determined by subtracting a positive reference value from a magnitude of a knock waveform model, as an area of the knock waveform model and, calculating the correlation coefficient, in the case where the engine speed is not smaller than the threshold value, using the area of the whole knock waveform model; and determining whether or not knocking has occurred using the correlation coefficient. The correlation coefficient is calculated by dividing by the area the sum of differences that are each the difference between the magnitude on the vibration waveform and the magnitude on the knock waveform model.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: June 26, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuichi Takemura
  • Patent number: 8145411
    Abstract: An engine ECU executes a program including the steps of: calculating a knock magnitude N by dividing an integrated value lpkknk obtained by integrating the magnitude of vibration in the knock detection gate by BGL; controlling ignition timing according to a result of comparison between knock magnitude N and a determination value VJ; stopping updating of a standard deviation ? when it is determined that determination value VJ to be compared with knock magnitude N is to be changed; updating a median value VM by increasing an update amount of median value VM; and updating BGL according to median value VM and standard deviation ?.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: March 27, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Satoshi Watanabe, Hiroto Tanaka, Rihito Kaneko, Norihito Hanai, Kenji Senda, Satoshi Masuda
  • Publication number: 20110257872
    Abstract: An output signal of a knock sensor is filtered with a plurality of band-pass filters to extract vibration waveform components of a plurality of frequency bands (f1-f4). Weighting coefficients (G1-G4) which multiply the vibration waveform component of each frequency band are established in such a manner as to be a small value as a noise intensity of each frequency band becomes larger. Thereby, the vibration waveform component of a plurality of frequency bands is synthesized by weighting according to an influence of a noise intensity of each frequency band. Even when the noise is superimposed on the vibration waveform component of any of the frequency bands, it becomes possible to reduce the influence of the noise and to synthesize the vibration waveform component of each frequency band, and an accurate knock determination can be performed based on the composite vibration waveform.
    Type: Application
    Filed: July 23, 2008
    Publication date: October 20, 2011
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Satoshi Masuda, Rihito Kaneko, Satoshi Watanabe, Hiroto Tanaka, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako
  • Patent number: 8020429
    Abstract: An engine ECU executes a program including calculating a correlation coefficient by dividing the sum of respective absolute values, which are each a difference between a magnitude in an engine vibration waveform and a magnitude in a knock waveform model for every crank angle, by an area corresponding to magnitudes equal to or larger than a positive reference value in the knock waveform model, and determining whether or not knocking has occurred based on the correlation coefficient.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: September 20, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuuichi Takemura, Shuhei Oe
  • Publication number: 20110146384
    Abstract: An engine ECU executes operations including: extracting vibration intensities of a plurality of frequency bands from vibration detected by a knock sensor, multiplying the extracted vibration intensity of each frequency band by a weight coefficient and adding the results in correspondence with crank angles to calculate integrated values of every five degrees; calculating a coefficient of correlation based on a result of comparison between a vibration waveform of a frequency band and a knock waveform model prepared in advance; calculating a knock intensity; determining occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity; and determining no occurrence of knocking in accordance with the calculated coefficient of correlation and the knock intensity.
    Type: Application
    Filed: July 28, 2008
    Publication date: June 23, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuichi Takemura
  • Patent number: 7963269
    Abstract: A 90° integrated value calculating unit of an engine ECU calculates a 90° integrated value obtained by integrating a magnitude. A calculating unit calculates a knock magnitude by dividing 90° integrated value by a BGL. A value obtained by subtracting a standard deviation ? from a median value of 90° integrated value is determined as the BGL. An ignition timing control unit controls the ignition timing depending on whether knock magnitude is equal to or larger than a determination value. A median value calculating unit calculates median value of 90° integrated value. A standard deviation calculating unit calculates standard deviation of 90° integrated value. A first stop unit stops updating of median value and standard deviation when 90° integrated value is smaller than a first threshold value or is equal to or larger than a second threshold value.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: June 21, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Rihito Kaneko, Hiroto Tanaka, Satoshi Watanabe, Norihito Hanai, Yasuhiro Yamasako, Kenji Senda, Satoshi Masuda
  • Patent number: 7945379
    Abstract: An engine ECU executes a program including the steps of: calculating a coefficient of correlation K in accordance with a result of comparing a waveform of a vibration of a frequency band including a resonance frequency of an engine with a knock waveform model previously created as a waveform of a vibration caused when the engine knocks; calculating a knock intensity N from an intensity of a vibration of a frequency band excluding the resonance frequency of the engine; if knock intensity N is larger than a reference value and coefficient of correlation K is larger than a threshold value, determining that the engine knocks; and if knock intensity N is smaller than the reference value and/or coefficient of correlation K is smaller than the threshold value, determining that the engine does not knock.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: May 17, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yuuichi Takemura, Shuhei Oe
  • Publication number: 20100162793
    Abstract: An engine ECU executes a program including calculating a correlation coefficient by dividing the sum of respective absolute values, which are each a difference between a magnitude in an engine vibration waveform and a magnitude in a knock waveform model for every crank angle, by an area corresponding to magnitudes equal to or larger than a positive reference value in the knock waveform model, and determining whether or not knocking has occurred based on the correlation coefficient.
    Type: Application
    Filed: June 27, 2007
    Publication date: July 1, 2010
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION, NIPPON SOKEN, INC
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuuichi Takemura, Shuhei Oe
  • Publication number: 20100162795
    Abstract: An engine ECU executes a program including the steps of: detecting a magnitude of vibration of an engine (S 102); detecting a vibration waveform of the engine based on the magnitude (S 104); calculating a correlation coefficient K, in the case where the engine speed NE is smaller than a threshold value NE (1), using the sum of values each determined by subtracting a positive reference value from a magnitude of a knock waveform model, as an area S of the knock waveform model and, calculating the correlation coefficient K, in the case where the engine speed NE is not smaller than the threshold value NE (1), using the area S of the whole knock waveform model (S114); and determining whether or not knocking has occurred using the correlation coefficient K (S 120, S 124). The correlation coefficient K is calculated by dividing by the area S the sum of differences that are each the difference between the magnitude on the vibration waveform and the magnitude on the knock waveform model.
    Type: Application
    Filed: May 27, 2008
    Publication date: July 1, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Yuichi Takemura
  • Patent number: 7681552
    Abstract: An engine ECU executes a program including: the step of increasing a determination value by a correction amount if the number of knock intensities not lower than the determination value is not smaller than a threshold value among knock intensities of a plurality of predetermined number of continuous ignition cycles; and the step of increasing the determination value by a correction amount if the number of knock intensities not smaller than the determination value is not smaller than a threshold value, among knock intensities of a plurality of ignition cycles satisfying the condition that a coefficient of correlation calculated by comparing a vibration waveform and a knock waveform model is not smaller than a threshold value, of the knock intensities of a plurality of predetermined continuous ignition cycles.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: March 23, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation, Nippon Soken, Inc.
    Inventors: Rihito Kaneko, Kenji Kasashima, Masatomo Yoshihara, Kenji Senda, Norihito Hanai, Yasuhiro Yamasako, Shuhei Oe, Yuichi Takemura