Patents by Inventor Norihito KASADA

Norihito KASADA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210090599
    Abstract: The magnetic recording medium includes a non-magnetic support; and a magnetic layer including a ferromagnetic powder, in which one or more kinds of component selected from the group consisting of a fatty acid and a fatty acid amide are included in a portion of the magnetic layer side on the non-magnetic support, and a C—H derived C concentration calculated from a C—H peak surface area ratio in C1s spectra obtained by X-ray photoelectron spectroscopic analysis performed on a surface of the magnetic layer at a photoelectron take-off angle of 10 degrees, after pressing the magnetic layer at a pressure of 70 atm is 45 atom % or more.
    Type: Application
    Filed: September 16, 2020
    Publication date: March 25, 2021
    Applicant: FUJIFILM Corporation
    Inventors: Megumi NAKANO, Eiki OZAWA, Norihito KASADA
  • Publication number: 20210082464
    Abstract: The magnetic recording medium includes a non-magnetic support; and a magnetic layer including a ferromagnetic powder, in which an isoelectric point of a surface zeta potential of the magnetic layer after pressing the magnetic layer at a pressure of 70 atm is equal to or less than 3.8.
    Type: Application
    Filed: September 16, 2020
    Publication date: March 18, 2021
    Applicant: FUJIFILM Corporation
    Inventors: Eiki OZAWA, Norihito KASADA
  • Publication number: 20210082463
    Abstract: The magnetic recording medium includes a non-magnetic support; and a magnetic layer including a ferromagnetic powder, in which an isoelectric point of a surface zeta potential of the magnetic layer after pressing the magnetic layer at a pressure of 70 atm is equal to or greater than 5.5.
    Type: Application
    Filed: September 15, 2020
    Publication date: March 18, 2021
    Applicant: FUJIFILM Corporation
    Inventors: Eiki OZAWA, Norihito KASADA
  • Patent number: 10937456
    Abstract: The magnetic tape has a magnetic layer containing ferromagnetic powder and binder on one surface of a nonmagnetic support and has a backcoat layer containing nonmagnetic powder and binder on the other surface thereof, wherein the thickness of the backcoat layer is less than or equal to 0.20 ?m, the contact angle for 1-bromonaphthalene that is measured on the surface of the backcoat layer falls within a range of 10.0° to 30.0°, and the contact angle for 1-bromonaphthalene that is measured on the surface of the magnetic layer falls within a range of 45.0° to 55.0°.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: March 2, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Takuto Kurokawa, Masahito Oyanagi
  • Patent number: 10910009
    Abstract: The magnetic tape has a magnetic layer containing ferromagnetic powder and binder on a nonmagnetic support, wherein the centerline average surface roughness Ra as measured on the surface on the magnetic layer side of the magnetic tape is less than or equal to 1.8 nm, and the logarithmic decrement as determined by a pendulum viscoelasticity test on the surface on the magnetic layer side of the magnetic tape is less than or equal to 0.050.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: February 2, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Masahito Oyanagi, Norihito Kasada, Toshio Tada, Takuro Sugiyama
  • Patent number: 10902875
    Abstract: Provided is a magnetic tape cartridge of a single reel type in which a magnetic tape is wound around a reel, in which the magnetic tape includes a non-magnetic support, and a magnetic layer including a ferromagnetic powder and a binding agent on the non-magnetic support, a tape thickness is equal to or smaller than 5.2 ?m, a tape width difference (B?A) between a tape width A at a position of 10 m±1 m from a tape outer end and a tape width B at a position of 50 m±1 m from a tape inner end is 2.4 ?m to 12.0 ?m, and the tape width A and the tape width B are values measured 100 days from the date of magnetic tape cartridge manufacture.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: January 26, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Yusuke Kagawa, Norihito Kasada, Yuto Murata
  • Patent number: 10902874
    Abstract: The magnetic tape includes a non-magnetic support; and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, in which an absolute value ?N of a difference between a refractive index Nxy measured regarding an in-plane direction of the magnetic layer and a refractive index Nz measured regarding a thickness direction of the magnetic layer is 0.25 to 0.40, and a coefficient of friction measured regarding a base portion of a surface of the magnetic layer is equal to or smaller than 0.30, a magnetic tape cartridge and a magnetic tape apparatus including this magnetic tape.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: January 26, 2021
    Assignee: FUJIFILM Corporation
    Inventor: Norihito Kasada
  • Publication number: 20210020195
    Abstract: The magnetic tape includes a non-magnetic support; and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, in which the magnetic layer has a servo pattern, and an absolute value ?N of a difference between a refractive index Nxy measured regarding an in-plane direction of the magnetic layer and a refractive index Nz measured regarding a thickness direction of the magnetic layer is 0.25 to 0.40, a magnetic tape cartridge and a magnetic tape apparatus including this magnetic tape.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 21, 2021
    Applicant: FUJIFILM Corporation
    Inventor: Norihito KASADA
  • Patent number: 10896692
    Abstract: The magnetic tape has a magnetic layer containing ferromagnetic powder and binder on one surface of a nonmagnetic support and has a backcoat layer containing nonmagnetic powder and binder on the other surface thereof, wherein the thickness of the backcoat layer is less than or equal to 0.20 ?m, and the contact angle for 1-bromonaphthalene that is measured on the surface of the backcoat layer falls within a range of 10.0° to 30.0°.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: January 19, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Takuto Kurokawa, Norihito Kasada, Masahito Oyanagi
  • Patent number: 10891982
    Abstract: The magnetic tape includes a non-magnetic support; and a magnetic layer including a ferromagnetic powder and a binding agent on the non-magnetic support, in which a magnetic tape total thickness is equal to or smaller than 5.30 ?m, the magnetic layer has a servo pattern, a center line average surface roughness Ra measured regarding a surface of the magnetic layer is equal to or smaller than 1.8 nm, and an isoelectric point of a surface zeta potential of the magnetic layer is equal to or greater than 5.5.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: January 12, 2021
    Assignee: FUJIFILM Corporation
    Inventor: Norihito Kasada
  • Patent number: 10878846
    Abstract: The magnetic tape include a non-magnetic support and a magnetic layer including ferromagnetic powder and a binding agent, in which the magnetic layer has a timing-based servo pattern, an edge shape of the timing-based servo pattern, specified by magnetic force microscopy is a shape in which a difference (L99.9?L0.1) between a value L99.9 of a cumulative distribution function of 99.9% and a value L0.1 of a cumulative distribution function of 0.1% in a position deviation width from an ideal shape of the magnetic tape in a longitudinal direction is 180 nm or less, and an isoelectric point of a surface zeta potential of the magnetic layer is 5.5 or more.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: December 29, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Eiki Ozawa, Atsushi Musha
  • Patent number: 10878845
    Abstract: The magnetic tape includes a non-magnetic support; a magnetic layer including ferromagnetic powder and a binding agent on one surface side of the non-magnetic support; and a back coating layer including non-magnetic powder and a binding agent on the other surface side of the non-magnetic support, in which a thickness of the back coating layer is equal to or smaller than 0.30 ?m, and an isoelectric point of a surface zeta potential of the back coating layer is equal to or smaller than 3.0.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: December 29, 2020
    Assignee: FUJIFILM Corporation
    Inventor: Norihito Kasada
  • Patent number: 10861491
    Abstract: The magnetic tape has a magnetic layer containing ferromagnetic powder, abrasive, and binder on a nonmagnetic support, wherein the centerline average surface roughness Ra measured on the surface of the magnetic layer is less than or equal to 1.8 nm, the contact angle for 1-bromonaphthalene that is measured on the surface of the magnetic layer falls within a range of 45.0° to 60.0°, and the coefficient of friction that is measured on the base portion of the surface of the magnetic layer is less than or equal to 0.35.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: December 8, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Masahito Oyanagi, Norihito Kasada, Takuto Kurokawa
  • Patent number: 10854233
    Abstract: Provided are a magnetic recording medium, in which a magnetic layer includes a ferromagnetic hexagonal ferrite powder, a binding agent, an oxide abrasive, an intensity ratio Int(110)/Int(114) obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, a vertical squareness ratio is 0.65 to 1.00, one or more kinds of component selected from the group consisting of fatty acid and fatty acid amide is contained in a magnetic layer side portion on the non-magnetic support, a C—H derived C concentration of the magnetic layer is 45 atom % to 65 atom %, and an average particle diameter of the oxide abrasive obtained from a secondary ion image obtained by irradiating the surface of the magnetic layer with a focused ion beam is 0.04 ?m to 0.08 ?m, and a magnetic recording and reproducing device including this magnetic recording medium.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Eiki Ozawa, Norihito Kasada
  • Patent number: 10854228
    Abstract: The magnetic tape includes a magnetic layer including ferromagnetic powder, non-magnetic powder, and a binding agent and a back coating layer including non-magnetic powder and a binding agent, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, a center line average surface roughness measured regarding a surface of the magnetic layer is equal to or smaller than 1.8 nm, an intensity ratio of a peak intensity of a diffraction peak of a (110) plane with respect to a peak intensity of a diffraction peak of a (114) plane of a hexagonal ferrite crystal structure obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, a vertical squareness ratio of the magnetic tape is 0.65 to 1.00, and a contact angle with respect to 1-bromonaphthalene measured regarding a surface of the back coating layer is 15.0° to 30.0°.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Takuto Kurokawa, Norihito Kasada, Toshio Tada, Eiki Ozawa
  • Patent number: 10854227
    Abstract: The magnetic recording medium includes a non-magnetic support and a magnetic layer which contains ferromagnetic powder and a binder, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, the magnetic layer contains an abrasive, Int (110)/Int (114) of a crystal structure of the hexagonal ferrite, determined by performing X-ray diffraction analysis on the magnetic layer by using an In-Plane method, to a peak intensity of a diffraction peak of (114) plane of the crystal structure is equal to or higher than 0.5 and equal to or lower than 4.0, a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00, and a logarithmic decrement obtained by performing a pendulum viscoelasticity test on a surface of the magnetic layer is equal to or lower than 0.050.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Toshio Tada, Eiki Ozawa, Takuto Kurokawa
  • Patent number: 10854230
    Abstract: The magnetic tape includes a magnetic layer including ferromagnetic powder, non-magnetic powder, and a binding agent and a back coating layer including non-magnetic powder and a binding agent, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, an Ra measured regarding a surface of the magnetic layer is equal to or smaller than 1.8 nm, an intensity ratio of a peak intensity of a diffraction peak of a (110) plane with respect to a peak intensity of a diffraction peak of a (114) plane of a hexagonal ferrite crystal structure obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, a vertical squareness ratio of the magnetic tape is 0.65 to 1.00, and a logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding a surface of the back coating layer is equal to or smaller than 0.060.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Toshio Tada, Eiki Ozawa, Takuto Kurokawa
  • Patent number: 10854226
    Abstract: Provided are a magnetic tape including: a non-magnetic support; and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, in which the magnetic layer has a timing-based servo pattern, a center line average surface roughness Ra measured regarding a surface of the magnetic layer is equal to or smaller than 1.8 nm, the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, an intensity ratio of a peak intensity of a diffraction peak of a (110) plane with respect to a peak intensity of a diffraction peak of a (114) plane of a hexagonal ferrite crystal structure obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, and a vertical direction squareness ratio of the magnetic tape is 0.65 to 1.00, and a magnetic tape device including this magnetic tape.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventor: Norihito Kasada
  • Patent number: 10854229
    Abstract: Provided is a magnetic tape in which an Ra measured regarding a surface of a magnetic layer is equal to or smaller than 1.8 nm, Int(110)/Int(114) of a hexagonal ferrite crystal structure obtained by an XRD analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, a vertical squareness ratio of the magnetic tape is 0.65 to 1.00, full widths at half maximum of spacing distribution measured by optical interferometry regarding the surface of the back coating layer before and after performing a vacuum heating with respect to the magnetic tape are greater than 0 nm and equal to or smaller than 10.0 nm, and a difference between the spacings measured by optical interferometry regarding the surface of the back coating layer before and after performing the vacuum heating is greater than 0 nm and equal to or smaller than 8.0 nm.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Eiki Ozawa, Toshio Tada, Norihito Kasada, Takuto Kurokawa
  • Patent number: 10854231
    Abstract: Provided are a magnetic recording medium, in which a magnetic layer includes ferromagnetic hexagonal ferrite powder, a binding agent, and an oxide abrasive, an intensity ratio Int(110)/Int(114) obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, a vertical squareness ratio of the magnetic recording medium is 0.65 to 1.00, a coefficient of friction measured regarding a base portion of a surface of the magnetic layer is equal to or smaller than 0.30, and an average particle diameter of the oxide abrasive obtained from a secondary ion image obtained by irradiating the surface of the magnetic layer with a focused ion beam is 0.04 ?m to 0.08 ?m, and a magnetic recording and reproducing device including this magnetic recording medium.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Eiki Ozawa