Patents by Inventor Norihito Masuda

Norihito Masuda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11830845
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: November 28, 2023
    Assignee: TESSERA LLC
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi
  • Publication number: 20220375891
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 24, 2022
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi
  • Patent number: 11424211
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: August 23, 2022
    Assignee: TESSERA LLC
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi
  • Publication number: 20210050322
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 18, 2021
    Applicant: Tessera, Inc.
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi
  • Patent number: 10833044
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: November 10, 2020
    Assignee: Tessera, Inc.
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi
  • Publication number: 20200168579
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Applicant: Tessera, Inc.
    Inventors: Hiroaki SATO, Teck-Gyu KANG, Belgacem HABA, Philip R. OSBORN, Wei-Shun WANG, Ellis CHAU, Ilyas MOHAMMED, Norihito MASUDA, Kazuo SAKUMA, Kiyoaki HASHIMOTO, Kurosawa INETARO, Tomoyuki KIKUCHI
  • Patent number: 10593643
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: March 17, 2020
    Assignee: Tessera, Inc.
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi
  • Publication number: 20180350766
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Application
    Filed: August 8, 2018
    Publication date: December 6, 2018
    Applicant: Tessera, Inc.
    Inventors: Hiroaki SATO, Teck-Gyu KANG, Belgacem HABA, Philip R. OSBORN, Wei-Shun WANG, Ellis CHAU, Ilyas MOHAMMED, Norihito MASUDA, Kazuo SAKUMA, Kiyoaki HASHIMOTO, Kurasawa INETARO, Tomoyuki KIKUCHI
  • Patent number: 10062661
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: August 28, 2018
    Assignee: Tessera, Inc.
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi
  • Publication number: 20170309593
    Abstract: A microelectronic assembly may include a substrate including a rigid dielectric layer having electrically conductive elements, a microelectronic element having a plurality of contacts exposed at a face thereof, and conductive vias extending through a compliant dielectric layer overlying the rigid dielectric layer. The vias electrically connect the substrate contacts respectively to the conductive elements, and the substrate contacts are joined respectively to the contacts of the microelectronic element. The vias, compliant layer and substrate contacts are adapted to appreciably relieve stress at the substrate contacts associated with differential thermal contact and expansion of the assembly.
    Type: Application
    Filed: July 7, 2017
    Publication date: October 26, 2017
    Inventors: Teck-Gyu KANG, Wei-Shun WANG, Hiroaki SATO, Kiyoaki HASHIMOTO, Yoshikuni NAKADAIRA, Norihito MASUDA, Belgacem HABA, Ilyas MOHAMMED, Philip DAMBERG
  • Publication number: 20170287733
    Abstract: Apparatuses relating to a microelectronic package are disclosed. In one such apparatus, a substrate has first contacts on an upper surface thereof. A microelectronic die has a lower surface facing the upper surface of the substrate and having second contacts on an upper surface of the microelectronic die. Wire bonds have bases joined to the first contacts and have edge surfaces between the bases and corresponding end surfaces. A first portion of the wire bonds are interconnected between a first portion of the first contacts and the second contacts. The end surfaces of a second portion of the wire bonds are above the upper surface of the microelectronic die. A dielectric layer is above the upper surface of the substrate and between the wire bonds. The second portion of the wire bonds have uppermost portions thereof bent over to be parallel with an upper surface of the dielectric layer.
    Type: Application
    Filed: June 21, 2017
    Publication date: October 5, 2017
    Inventors: Hiroaki SATO, Teck-Gyu KANG, Belgacem HABA, Philip R. OSBORN, Wei-Shun WANG, Ellis CHAU, Ilyas MOHAMMED, Norihito MASUDA, Kazuo SAKUMA, Kiyoaki HASHIMOTO, Kurosawa INETARO, Tomoyuki KIKUCHI
  • Patent number: 9716075
    Abstract: A microelectronic assembly may include a substrate including a rigid dielectric layer having electrically conductive elements, a microelectronic element having a plurality of contacts exposed at a face thereof, and conductive vias extending through a compliant dielectric layer overlying the rigid dielectric layer. The vias electrically connect the substrate contacts respectively to the conductive elements, and the substrate contacts are joined respectively to the contacts of the microelectronic element. The vias, compliant layer and substrate contacts are adapted to appreciably relieve stress at the substrate contacts associated with differential thermal contact and expansion of the assembly.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: July 25, 2017
    Assignee: Tessera, Inc.
    Inventors: Teck-Gyu Kang, Wei-Shun Wang, Hiroaki Sato, Kiyoaki Hashimoto, Yoshikuni Nakadaira, Norihito Masuda, Belgacem Haba, Ilyas Mohammed, Philip Damberg
  • Patent number: 9691731
    Abstract: A method of making a microelectronic package includes forming a dielectric encapsulation layer on an in-process unit having a substrate having a first surface and a second surface remote therefrom. A microelectronic element is mounted to the first surface of the substrate, and a plurality of conductive elements exposed at the first surface, at least some of which are electrically connected to the microelectronic element. Wire bonds have bases joined to the conductive elements and end surfaces remote from the bases and define an edge surface extending away between the base and the end surface. The encapsulation layer is formed to at least partially cover the first surface and portions of the wire bonds with unencapsulated portions of the wire bonds being defined by at least one of the end surface or a portion of the edge surface that is uncovered thereby.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 27, 2017
    Assignee: Tessera, Inc.
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi
  • Publication number: 20160254247
    Abstract: Described herein are microelectronic packages and methods of making such packages. Consistent with an example embodiment, the package includes a microelectronic unit. Conductive traces are disposed on a surface of the microelectronic unit. The package also includes a substrate with first and second opposed surfaces. The first surface faces the surface of and is in contact with the microelectronic unit; the second surface has a plurality of terminals configured for electrical connection with a least one external component. The substrate has conductive interconnects that include masses of conductive material joined to the conductive traces and electrically connected with the terminals. Conductive material passes from the second surface to the first surface and contacts the conductive traces and the terminals.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Hiroaki SATO, Kiyoaki HASHIMOTO, Yoshikuni NAKADAIRA, Norihito MASUDA, Belgacem HABA, Ilyas MOHAMMED, Philip DAMBERG
  • Patent number: 9337165
    Abstract: The present disclosure is directed to a method for making a microelectronic package that includes assembling a microelectronic unit with a substrate, and electrically connecting redistribution contacts on the microelectronic unit and terminals on the substrate with a conductive matrix material extending within at least one opening extending through the substrate.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: May 10, 2016
    Assignee: Tessera, Inc.
    Inventors: Hiroaki Sato, Kiyoaki Hashimoto, Yoshikuni Nakadaira, Norihito Masuda, Belgacem Haba, Ilyas Mohammed, Philip Damberg
  • Publication number: 20160005711
    Abstract: A microelectronic assembly may include a substrate including a rigid dielectric layer having electrically conductive elements, a microelectronic element having a plurality of contacts exposed at a face thereof, and conductive vias extending through a compliant dielectric layer overlying the rigid dielectric layer. The vias electrically connect the substrate contacts respectively to the conductive elements, and the substrate contacts are joined respectively to the contacts of the microelectronic element. The vias, compliant layer and substrate contacts are adapted to appreciably relieve stress at the substrate contacts associated with differential thermal contact and expansion of the assembly.
    Type: Application
    Filed: September 11, 2015
    Publication date: January 7, 2016
    Inventors: Teck-Gyu Kang, Wei-Shun Wang, Hiroaki Sato, Kiyoaki Hashimoto, Yoshikuni Nakadaira, Norihito Masuda, Belgacem Haba, Ilyas Mohammed, Philip Damberg
  • Patent number: 9224717
    Abstract: A method of making a microelectronic package includes forming a dielectric encapsulation layer on an in-process unit having a substrate having a first surface and a second surface remote therefrom. A microelectronic element is mounted to the first surface of the substrate, and a plurality of conductive elements exposed at the first surface, at least some of which are electrically connected to the microelectronic element. Wire bonds have bases joined to the conductive elements and end surfaces remote from the bases and define an edge surface extending away between the base and the end surface. The encapsulation layer is formed to at least partially cover the first surface and portions of the wire bonds with unencapsulated portions of the wire bonds being defined by at least one of the end surface or a portion of the edge surface that is uncovered thereby.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: December 29, 2015
    Assignee: Tessera, Inc.
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi
  • Patent number: 9137903
    Abstract: A microelectronic assembly may include a substrate including a rigid dielectric layer having electrically conductive elements, a microelectronic element having a plurality of contacts exposed at a face thereof, and conductive vias extending through a compliant dielectric layer overlying the rigid dielectric layer. The vias electrically connect the substrate contacts respectively to the conductive elements, and the substrate contacts are joined respectively to the contacts of the microelectronic element. The vias, compliant layer and substrate contacts are adapted to appreciably relieve stress at the substrate contacts associated with differential thermal contact and expansion of the assembly.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: September 15, 2015
    Assignee: Tessera, Inc.
    Inventors: Teck-Gyu Kang, Wei-Shun Wang, Hiroaki Sato, Kiyoaki Hashimoto, Yoshikuni Nakadaira, Norihito Masuda, Belgacem Haba, Ilyas Mohammed, Philip Damberg
  • Patent number: 9093435
    Abstract: A method of making a microelectronic package includes forming a dielectric encapsulation layer on an in-process unit having a substrate having a first surface and a second surface remote therefrom. A microelectronic element is mounted to the first surface of the substrate, and a plurality of conductive elements exposed at the first surface, at least some of which are electrically connected to the microelectronic element. Wire bonds have bases joined to the conductive elements and end surfaces remote from the bases and define an edge surface extending away between the base and the end surface. The encapsulation layer is formed to at least partially cover the first surface and portions of the wire bonds with unencapsulated portions of the wire bonds being defined by at least one of the end surface or a portion of the edge surface that is uncovered thereby.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: July 28, 2015
    Assignee: Tessera, Inc.
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi
  • Publication number: 20150091118
    Abstract: A method of making a microelectronic package includes forming a dielectric encapsulation layer on an in-process unit having a substrate having a first surface and a second surface remote therefrom. A microelectronic element is mounted to the first surface of the substrate, and a plurality of conductive elements exposed at the first surface, at least some of which are electrically connected to the microelectronic element. Wire bonds have bases joined to the conductive elements and end surfaces remote from the bases and define an edge surface extending away between the base and the end surface. The encapsulation layer is formed to at least partially cover the first surface and portions of the wire bonds with unencapsulated portions of the wire bonds being defined by at least one of the end surface or a portion of the edge surface that is uncovered thereby.
    Type: Application
    Filed: December 9, 2014
    Publication date: April 2, 2015
    Applicant: TESSERA, INC.
    Inventors: Hiroaki Sato, Teck-Gyu Kang, Belgacem Haba, Philip R. Osborn, Wei-Shun Wang, Ellis Chau, Ilyas Mohammed, Norihito Masuda, Kazuo Sakuma, Kiyoaki Hashimoto, Kurosawa Inetaro, Tomoyuki Kikuchi