Patents by Inventor Norikazu Komada

Norikazu Komada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20010041278
    Abstract: A solid oxide fuel cell and method of making same is disclosed. An electrolyte layer of an oxide ion conductor material that may be specified by La1—aAaGa1—(b+c)BbCocO3 and an air electrode layer of an electron conductor material that may be specified by La1—dAdCoO3 are laminated, preferably with an intermediate layer of an electron and ion mixed conductor material that may be specified by La1—eAeGa1—(f+g)BfCogO3 interposed therebetween. The laminate may be sintered to integrate the layers, and may then subjected to a heat treatment to cause elements to diffuse through an interface between adjoining layers. The composition in each interface is thus continuously changed. Here, A may be at least one element selected from the group consisting of Sr and Ca, B may be at least one element selected from the group consisting of Mg, Al, and In, and 0.05≦a≦0.3, 0≦b, e≦0.3, 0≦c≦0.15, b+c≦0.3, 0≦d≦d≦0.5, 0≦f≦0.15, 0.15<g≦0.
    Type: Application
    Filed: July 5, 2001
    Publication date: November 15, 2001
    Applicant: Mitsubishi Materials Corporation
    Inventors: Ikiko Hashimoto, Norikazu Komada, Kazunori Adachi
  • Patent number: 6287716
    Abstract: A solid oxide fuel cell and method of making same is disclosed. An electrolyte layer of an oxide ion conductor material that may be specified by La1−aAaGa1−(b+c)BbCocO3 and an air electrode layer of an electron conductor material that may be specified by La1−dAdCoO3 are laminated, preferably with an intermediate layer of an electron and ion mixed conductor material that may be specified by La1−eAeGa1−(f+g)BfCogO3 interposed therebetween. The laminate may be sintered to integrate the layers, and may then subjected to a heat treatment to cause elements to diffuse through an interface between adjoining layers. The composition in each interface is thus continuously changed. Here, A may be at least one element selected from the group consisting of Sr and Ca, B may be at least one element selected from the group consisting of Mg, Al, and In, and 0.05≦a≦0.3, 0≦b, e≦0.3, 0≦c≦0.15, b+c≦0.3, 0≦d≦0.5, 0≦f≦0.15, 0.15<g≦0.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: September 11, 2001
    Assignee: Mitsubishi Materials Corporation
    Inventors: Ikiko Hashimoto, Norikazu Komada, Kazunori Adachi
  • Patent number: 6117592
    Abstract: The porous metallic material of the present invention has an overall porosity of 80 to 99%, and a skeleton in a three dimensional network structure which is entirely composed of a sintered metal powder having a porosity of 10 to 60%. The specific surface area is very high, for example, 300 to 11000 cm.sup.2 /cm.sup.3. The porous metallic material can be reinforced by a reinforcing plate. The porous metallic material is also suitable for an electrode of an alkaline secondary battery and enables achievement of increases in the life and the amount of the active material contained therein. The porous metallic material can be produced by preparing a foamable slurry containing a metal powder, forming the foamable slurry, drying the formed product, preferably after foaming, and finally burning the dry formed product.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: September 12, 2000
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kouji Hoshino, Yoshitaka Mayuzumi, Tohru Kohno, Norikazu Komada
  • Patent number: 5951945
    Abstract: There is provided a hydrogen occluding alloy exhibiting high absorption and desorption speeds. A hydrogen occluding alloy comprising as an overall composition: 25 to 45 weight % Zr+Hf, wherein the Hf comprises not more than 4%, 1 to 12 weight % Ti, 10 to 20 weight % Mn, 2 to 12 weight % V, 0.6 to 5 weight % rare earth elements, and a balance Ni (of which content is not less than 25 weight %) and unavoidable impurities, and basically having a three-phase structure consisting of: a main phase which constitutes the matrix of the alloy and which is made of a Zr--Ni--Mn based alloy, a dispersed granular phase made of a rare earth elements--Ni type alloy distributed along the grain boundary of the main phase, and a flaky phase which is made of a Ni--Zr type alloy attached to the dispersed granular phase and intermittently distributed along the grain boundary mentioned above.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: September 14, 1999
    Assignee: Mitsubishi Materials Corporation
    Inventors: Norikazu Komada, Mitsugu Matsumoto, Shinichiro Kakehashi, Yoshitaka Tamo
  • Patent number: 5932369
    Abstract: This invention provides a hydrogen occluding alloy exhibiting high absorption/desorption rates, and excellent initial activation, the alloy having a composition comprising, by wt %, 25% to 45% of Zr, 1% to 12% of Ti, 10% to 20 % of Mn, 2% to 12% of V, 0.5% to 5% of at least one rare earth element, preferably comprising La and/or Ce, optionally 0.1% to 4% of Hf, and a balance being Ni (25% or more of Ni) and unavoidable impurities. The alloy has a structure comprising: a main phase made of a Zr--Ni--Mn based alloy, numerous cracks, and a regenerated phase made of rare earth element-Ni type alloy, the regenerated phase being exposed on the surfaces of the cracks, as well as electrodes made of the alloy.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: August 3, 1999
    Assignee: Mitsubishi Materials Corporation
    Inventors: Norikazu Komada, Shinichiro Kakehashi, Mitsugu Matsumoto, Yoshitaka Tamo
  • Patent number: 5885378
    Abstract: This invention provides a hydrogen occluding alloy having a composition comprising, by wt %, 25% to 45% of Zr, 1% to 12% of Ti, 10% to 20% of Mn, 2% to 12% of V, 0.5% to 5% of at least one rare earth element, optionally 0.1% to 4% of Hf, one or more selected from hydrogen, hydrogen+oxygen, and oxygen, and a balance being Ni (25% or more of Ni) and unavoidable impurities, having a structure comprising: a phase made of a hydrogenated-product, dispersedly distributed in a matrix phase made of a Zr--Ni--Mn based alloy. The hydrogenated-product mainly comprises a rare earth element-Ni type alloy and a rare earth element hydride with numerous cracks formed at the time when the hydrogenated-product phase is generated. The hydrogenated-product phase is formed by exposing a hydrogen-containing substance on the surfaces of the cracks. Electrodes made of the alloy are disclosed.
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: March 23, 1999
    Assignee: Mitsubishi Materials Corporation
    Inventors: Norikazu Komada, Mitsugu Matsumoto, Shinichiro Kakehashi, Yoshitaka Tamo
  • Patent number: 5848351
    Abstract: The porous metallic material of the present invention has an overall porosity of 80 to 99%, and a skeleton in a three dimensional network structure which is entirely composed of a sintered metal powder having a porosity of 10 to 60%. The specific surface area is very high, for example, 300 to 11000 cm.sup.2 /cm.sup.3. The porous metallic material can be reinforced by a reinforcing plate. The porous metallic material is also suitable for an electrode of an alkaline secondary battery and enables achievement of increases in the life and the amount of the active material contained therein. The porous metallic material can be produced by preparing a foamable slurry containing a metal powder, forming the foamable slurry, drying the formed product, preferably after foaming, and finally burning the dry formed product.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: December 8, 1998
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kouji Hoshino, Yoshitaka Mayuzumi, Tohru Kohno, Norikazu Komada
  • Patent number: 5810981
    Abstract: There is provided a hydrogen occluding alloy exhibiting high absorption and desorption speeds. A hydrogen occluding alloy comprising as an overall composition: 25 to 45 weight % Zr+Hf, wherein the Hf comprises not more than 4%, 1 to 15 weight % Ti, 10 to 20 weight % Mn, 2 to 12 weight % V, 0.6 to 5 weight % rare earth elements, and a balance Ni (of which content is not less than 25 weight %) and unavoidable impurities, and basically having a three-phase structure consisting of: a net-shaped continuous phase which is made of a Ni--Zr type alloy, a main phase (in the net-shaped continuous phase) made of a Zr--Ni--Mn based alloy, and a dispersed granular phase made of a rare earth elements-Ni type alloy distributed along the net-shaped continuous phase.
    Type: Grant
    Filed: March 8, 1996
    Date of Patent: September 22, 1998
    Assignee: Mitsubishi Materials Corporation
    Inventors: Norikazu Komada, Mitsugu Matsumoto, Shinichiro Kakehashi, Yoshitaka Tamo, Chris N. Christodoulou
  • Patent number: 5543070
    Abstract: This invention relates to a magnetic recording powder having a low Curie temperature and a high saturation magnetization (.sigma.s). The magnetic recording powder of this invention is of a composite oxide having a hexagonal ferrite type crystal structure comprises: (a) between 14 and 20 atomic % of at least one of strontium oxide and barium oxide, (b) between 15 and 40 atomic % of chromium oxide, (c) between 2 and 15 atomic % of at least one member of the group consisting of zinc oxide, magnesium oxide and copper oxide, (d) between 2 and 15 atomic % of at least one member of the group consisting of titanium oxide, zirconium oxide and tin oxide, with substantial remainder being iron oxide and unavoidable impurities. Further, the magnetic recording powder of this invention is of a composite oxide having saturation magnetization (.sigma.s) of 15 emu/g or higher, and a Curie temperature (Tc) of 155.degree. C. or lower.
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: August 6, 1996
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kouichi Ishiyama, Kazunori Igarashi, Norikazu Komada, Takuo Takeshita, Kiyoyuki Ookubo
  • Patent number: 5500158
    Abstract: A process for producing a UO.sub.2 pellet comprising the steps of producing UO.sub.2 powder in accordance with the ADU (ammonium diuranate) method or the AUC (ammonium uranyl carbonate) method, forming a compact of said UO.sub.2 powder, and sintering the compact, wherein UO.sub.2 powder having a specific surface area of 5-50 m.sup.2 /g is used as a raw material in the compact forming step. At least one of chlorine or a chlorine compound (or bromine or a bromine compound) is added, in one or more of the UO.sub.2 powder producing step, compact forming step, or compact sintering step, in an amount such that the chlorine content (or bromine content) in the UO.sub.2 pellet amounts to 3-25 ppm chlorine (or 6-50 ppm bromine).
    Type: Grant
    Filed: December 19, 1994
    Date of Patent: March 19, 1996
    Assignee: Mitsubishi Materials Corporation
    Inventors: Norikazu Komada, Keiji Nishinaka, Kazunori Adachi, Shuji Fujiwara