Patents by Inventor Norio Takami

Norio Takami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200295363
    Abstract: According to one embodiment, there is provided an active material represented by a general formula Lix(NiaCobMncMd)1?s(Nb1?tTat)sO2. Here, M is at least one selected from the group consisting of Li, Ca, Mg, Al, Ti, V, Cr, Zr, Mo, Hf, and W, and 1.0?x?1.3, 0?a?0.9, 0?b?1.0, 0?c?0.8, 0?d?0.5, a+b+c+d=1, 0.005?s?0.3, and 0.0005?t?0.1 are satisfied.
    Type: Application
    Filed: September 3, 2019
    Publication date: September 17, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tetsuya Sasakawa, Yasuhiro Harada, Norio Takami
  • Patent number: 10777820
    Abstract: A non-aqueous electrolyte battery includes bi-polar electrodes and non-aqueous electrolyte layers. Each electrode has a pyroelectric member and positive-pole and negative-pole active material layers on one and the other surfaces of the member. In the electrode, a position of the positive-pole layer does not overlap a position of the negative-pole layer in a thickness direction of the member. A laminated product in which the bi-polar electrodes are laminated with the electrolyte layers being interposed between the positive-pole and negative-pole active material layers on one and the other members is provided. The product has one of a first type electrode group in which the product is spirally wound and a second type electrode group in which the product is alternately bent, folded, and layered.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: September 15, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazuomi Yoshima, Yasuhiro Harada, Norio Takami
  • Patent number: 10756349
    Abstract: According to one embodiment, provided is a secondary battery including an aqueous electrolyte, a positive electrode, and a negative electrode. A compound containing an element A is present on at least a part of the surface of the negative electrode. The element A is at least one selected from the group consisting of Hg, Pb, Zn, and Bi. According to scanning electron microscopy, a region where the compound containing the element A is present accounts for 50% of more of the surface of the negative electrode.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 25, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hayato Seki, Yumiko Sekiguchi, Kazuomi Yoshima, Yasuyuki Hotta, Shinsuke Matsuno, Norio Takami
  • Patent number: 10756392
    Abstract: According to one embodiment, a secondary battery is provided. The secondary battery includes a negative electrode, a positive electrode, a first aqueous electrolyte, a second aqueous electrolyte, and a partition having a first surface and a second surface opposite to the first surface. The partition is positioned between the negative electrode and the positive electrode. The first aqueous electrolyte is in contact with the first surface of the partition and the negative electrode. The second aqueous electrolyte is in contact with the second surface of the partition and the positive electrode. The partition contains a solid electrolyte having alkali metal ion conductivity. The first aqueous electrolyte includes an organic compound.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: August 25, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hayato Seki, Kazuomi Yoshima, Shinsuke Matsuno, Norio Takami
  • Patent number: 10749169
    Abstract: According to one embodiment, an active material is provided. The active material includes a first phase including a niobium-titanium composite oxide, and a second phase adjacent to the first phase and including an orthorhombic niobium oxide. The active material is a particle in which a second (010) plane of the orthorhombic niobium oxide is in contact with a first (010) plane of the niobium-titanium composite oxide in at least a part of a contact interface between the first phase and the second phase.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: August 18, 2020
    Assignees: KABUSHIKI KAISHA TOSHIBA, Toshiba Infrastructure Systems & Solutions Corporation
    Inventors: Yasuhiro Harada, Norio Takami, Keigo Hoshina, Kazuomi Yoshima
  • Patent number: 10741830
    Abstract: According to one embodiment, an electrode including active material particles is provided. The active material particles contain monoclinic niobium-titanium composite oxide particles and an amorphous carbon body. The amorphous carbon body covers at least a part of surfaces of the monoclinic niobium-titanium composite oxide particles. A ratio S2/S1 of a carbon atom concentration S2 to a niobium atom concentration S1 at a surface of the electrode, according to X-ray photoelectron spectroscopy, is from 5 to 100.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: August 11, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazuki Ise, Yasuhiro Harada, Norio Takami
  • Patent number: 10727540
    Abstract: According to one embodiment, a secondary battery including a positive electrode, a negative electrode, and an electrolyte is provided. The negative electrode includes titanium-containing oxide and at least one kind of element selected from the group consisting of B, P, Al, La, Zr, Ge, Zn, Sn, Ga, Pb, In, Bi, and Tl. The electrolyte includes lithium ions and a solvent containing water.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: July 28, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Norio Takami, Yasunobu Yamashita, Shinsuke Matsuno, Yasuhiro Harada, Hiroki Inagaki
  • Patent number: 10720667
    Abstract: According to one embodiment, a secondary battery including a positive electrode, a negative electrode, a separator, a first electrolyte, and a second electrolyte is provided. The separator is provided at least between the positive electrode and the negative electrode. The separator includes an alkali metal ion conductive solid electrolyte. The first electrolyte is contained in at least the positive electrode. The first electrolyte includes a first alkali metal salt and a first aqueous solvent. The second electrolyte is contained in at least the negative electrode. The second electrolyte includes a second alkali metal salt and a second aqueous solvent.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: July 21, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Norio Takami, Kazuomi Yoshima, Hayato Seki, Shinsuke Matsuno
  • Patent number: 10707483
    Abstract: According to one embodiment, an electrode including an active material-containing layer and a film is provided. The active material-containing layer contains an active material containing a titanium-containing oxide. The film is present on at least a part of a surface of the active material-containing layer. The film contains fluorine, an organic atom, and a metal ion. The fluorine includes fluorine bonded to the organic atom and fluorine bonded to the metal ion. The film satisfies a relationship of following formula (1), where F1 is a proportion of the fluorine bonded to the organic atom, and F2 is a proportion of the fluorine bonded to the metal ion: 0.1?F2/F1?0.6??(1).
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: July 7, 2020
    Assignees: KABUSHIKI KAISHA TOSHIBA, Toshiba Infrastructure Systems & Solutions Corporation
    Inventors: Kazuhiro Yasuda, Yusuke Namiki, Tetsuya Sasakawa, Yasuhiro Harada, Norio Takami
  • Patent number: 10707523
    Abstract: According to one embodiment, there is provided a solid electrolyte including an oxide represented by General Formula Li1+2xM12?x(Ca1?yM2y)x(PO4)3. In the General Formula above, M1 is at least one selected from the group consisting of Zr and Hf. M2 is at least one selected from the group consisting of Sr and Ba. x satisfies 0<x<2. y satisfies 0<y?1.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: July 7, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuhiro Harada, Tomoe Kusama, Norio Takami, Kazuomi Yoshima
  • Patent number: 10700350
    Abstract: According to one embodiment, a nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode includes at least one oxide selected from the group consisting of a first oxide having a spinel structure and represented by LixNi0.5Mn1.5O4, a second metal phosphate having an olivine structure and represented by LixMn1?wFewPO4, and a third oxide having a layered structure and represented by LixNiyMnzCo1?y?zO2. The nonaqueous electrolyte includes a first solvent. The first solvent includes at least one compound selected from the group consisting of trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, and fluorinated phosphate ester.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: June 30, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Norio Takami, Hiroki Inagaki, Takashi Kishi
  • Patent number: 10700351
    Abstract: According to one embodiment, a nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode includes at least one oxide selected from the group consisting of a first oxide having a spinel structure and represented by LixNi0.5Mn1.5O4, a second metal phosphate having an olivine structure and represented by LixMn1-wFewPO4, and a third oxide having a layered structure and represented by LixNiyMnzCo1-y-zO2. The nonaqueous electrolyte includes a first solvent. The first solvent includes at least one compound selected from the group consisting of trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, and fluorinated phosphate ester.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: June 30, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Norio Takami, Hiroki Inagaki, Takashi Kishi
  • Publication number: 20200203722
    Abstract: An electrode comprises a current collector; and an active material-containing layer having active materials on the current collector. The active material-containing layer has a first surface contacting the current collector and a second surface which is opposite side of the first surface. At least one part of the second surface is covered by a compound containing Zn. When an image of the second surface is taken by Scanning Electron Microscope, the image is divided into 100 blocks, a ratio of existence of blocks having hexagonal platelet shaped compound containing Zn to the 100 blocks is calculated, and the ratio of existence of blocks is calculated with respect to 10 images, an average of the ratio of existence of blocks with respect to the 10 images is 20% or less (including 0).
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasuyuki HOTTA, Shinsuke MATSUNO, Norio TAKAMI
  • Publication number: 20200203721
    Abstract: According to one embodiment, provided is a lithium zinc secondary battery including a positive electrode, a negative electrode, an aqueous electrolyte, and a separator between the positive electrode and the negative electrode. The negative electrode includes a zinc-including metal body and an oxide on at least a part of a surface of the metal body. The aqueous electrolyte includes zinc and a lithium salt. Zinc is dissolved and deposited at the negative electrode. Lithium is inserted and extracted from the oxide in a range of ?1.4 V (vs. SCE) or more and ?1.0 V (vs. SCE) or less. A specific surface area of the oxide is 10 m2/g or more and 350 m2/g or less. A mol concentration ratio Zn/Li between zinc and lithium in the aqueous electrolyte is 1.0×10?5 or more and 0.3 or less.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazuki Ise, Yasunobu Yamashita, Kazuomi Yoshima, Shinsuke Matsuno, Norio Takami, Hiroki Inagaki
  • Publication number: 20200203731
    Abstract: According to one embodiment, an electrode is provided. The electrode includes a current collector, an electrode mixture layer, and a self-assembled film. The first self-assembled film covers at least a part of a surface of the current collector. The first self-assembled film contains organic molecules. The electrode mixture layer disposed on at least a part of the first self-assembled film.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasunobu YAMASHITA, Shinsuke Matsuno, Norio Takami, Hiroki Inagaki
  • Publication number: 20200194823
    Abstract: According to one embodiment, a secondary battery includes a positive electrode, a negative electrode and a separator. The positive electrode includes a first electrolyte containing aluminum ions. The negative electrode is capable of allowing lithium ions to be inserted and extracted. The separator is disposed between the positive electrode and the negative electrode. The separator has lithium ion conductivity.
    Type: Application
    Filed: February 25, 2020
    Publication date: June 18, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Norio TAKAMI, Shinsuke MATSUNO
  • Patent number: 10673103
    Abstract: A battery module according to one embodiment includes a first battery unit including a first nonaqueous electrolyte battery, and a second battery unit electrically connected in series to the first battery unit and including a second nonaqueous electrolyte battery. Each of the first and second nonaqueous electrolyte batteries includes a negative electrode including a spinel-type lithium titanate. The first nonaqueous electrolyte battery includes a positive electrode including at least one olivine-type lithium phosphate. The second nonaqueous electrolyte battery includes a positive electrode including at least one lithium-containing composite oxide. The discharge capacity ratio Ca/Cb between the first battery unit and the second battery unit satisfy 1.5<Ca/Cb?50.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: June 2, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Keigo Hoshina, Yoshiyuki Isozaki, Norio Takami
  • Publication number: 20200168913
    Abstract: According to one embodiment, there is provided a secondary battery including a positive electrode, a negative electrode, and an aqueous electrolyte. The positive electrode includes a positive electrode active material. The negative electrode includes a negative electrode active material and an additive resin containing a hydroxyl group unit and a first unit. The first unit consists of at least one of a butyral unit and an acetal unit. A content ratio of a content of the first unit contained in the additive resin to a content of the hydroxyl group unit contained in the additive resin is in a range of 1.2 to 18.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasuyuki HOTTA, Shinsuke MATSUNO, Norio TAKAMI
  • Patent number: 10651466
    Abstract: According to one embodiment, there is provided an active material. The active material includes a composite oxide having an orthorhombic structure. The composite oxide is represented by the general formula Ti2(Nb1-xTax)2O9 (0?x?1). The composite oxide has an average valence of niobium and/or tantalum of 4.95 or more.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: May 12, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yasuhiro Harada, Kazuomi Yoshima, Norio Takami, Hiroki Inagaki
  • Publication number: 20200127322
    Abstract: According to one embodiment, a composite electrolyte includes lithium-containing oxide particles and an electrolytic composition. The electrolytic composition includes lithium ions, an organic solvent and a polymer. A content of the lithium-containing oxide particles in the composite electrolyte falls within a range of from 90% by weight to 98% by weight. A specific surface area of the lithium-containing oxide particles falls within a range of 10 m2/g to 500 m2/g and is measured by a BET adsorption method using N2.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 23, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Norio TAKAMI, Kazuomi YOSHIMA, Yasuhiro HARADA