Patents by Inventor Noritaka Takahata

Noritaka Takahata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8696836
    Abstract: The present invention provides a nonmagnetic high-hardness alloy having a Ni-based alloy composition containing; by weight %, C of 0.1% or less: Si of 2.0% or less; Mn of 2.0% or less; P of 0.03% or less; S of 0.01% or less; Cr of 30 to 45%; Al of 1.5 to 5.0%; and a balance of unavoidable impurities and Ni, the nonmagnetic high-hardness alloy being subjected to cold or warm plastic working and then ageing treatment, and a method for producing the nonmagnetic high-hardness alloy.
    Type: Grant
    Filed: March 2, 2006
    Date of Patent: April 15, 2014
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Noritaka Takahata, Michiharu Ogawa, Shigeki Ueta, Tetsuya Shimizu
  • Patent number: 8430977
    Abstract: The present invention relates to a hollow drilling steel rod including a stem portion and a thread portion positioned at an end portion in an axial direction with respect to the stem portion, the hollow drilling steel rod being constituted of a steel having a specific composition described in the present specification, in which the thread portion includes a thread having been subjected to a high frequency quenching, and the thread portion and the stem portion separate from each other have been joined by a friction welding.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: April 30, 2013
    Assignee: Mitsubishi Materials Corporation
    Inventors: Masaya Hisada, Yoneo Hiwasa, Satoshi Nagase, Noritaka Takahata
  • Publication number: 20120211127
    Abstract: The present invention relates to a hollow drilling steel rod including a stem portion and a thread portion positioned at an end portion in an axial direction with respect to the stem portion, the hollow drilling steel rod being constituted of a steel having a specific composition described in the present specification, in which the thread portion includes a thread having been subjected to a high frequency quenching, and the thread portion and the stem portion separate from each other have been joined by a friction welding.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 23, 2012
    Applicants: Daido Steel Co., Ltd., Mitsubishi Materials Corporation
    Inventors: Masaya HISADA, Yoneo Hiwasa, Satoshi Nagase, Noritaka Takahata
  • Publication number: 20060207696
    Abstract: The present invention provides a nonmagnetic high-hardness alloy having a Ni-based alloy composition containing; by weight%, C of 0.1% or less: Si of 2.0% or less; Mn of 2.0% or less; P of 0.03% or less; S of 0.01% or less; Cr of 30 to 45%; Al of 1.5 to 5.0%; and a balance of unavoidable impurities and Ni, the nonmagnetic high-hardness alloy being subjected to cold or warm plastic working and then ageing treatment, and a method for producing the nonmagnetic high-hardness alloy.
    Type: Application
    Filed: March 2, 2006
    Publication date: September 21, 2006
    Applicant: DAIDO TOKUSHUKO KABUSHIKI KAISHA
    Inventors: Noritaka Takahata, Michiharu Ogawa, Shigeki Ueta, Tetsuya Shimizu
  • Publication number: 20040187973
    Abstract: Disclosed is a nickel-base super heat resistant cast alloy, from which turbine wheels of automobile engines can be manufacture by casting. The alloy consists essentially of, by weight %, C: 0.02-0.50%, Si: up to 1.0%, Mn: up to 1.0%, Cr: 4.0-10.0%, Al: 2.0-8.0%, Co: up to 15.0%, W: 8.0-16.0%, Ta: 2.0-8.0%, Ti: up to 3.0%, Zr: 0.001-0.200% and B: 0.005-0.300% and the balance of Ni and inevitable impurities, provided that, [%Al]+[%Ti]+[%Ta], by atomic %, amounts to 12.0-15.5%, that it contains &ggr;/&ggr;′-eutectoid of, by area percentage, 1-15%, that it contains carbides of, by area percentage, 1-10%, and that the “M-value” determined by the alloy composition is in the range of 93-98. The turbine wheels withstand temperature increase of exhaust gas.
    Type: Application
    Filed: March 23, 2004
    Publication date: September 30, 2004
    Inventors: Noritaka Takahata, Shigeki Ueta, Toshiharu Noda, Tetsuya Shimizu