Patents by Inventor Noriyuki Sakai

Noriyuki Sakai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230042359
    Abstract: An electromagnetic shielding composition includes silver particles (A), and a first solvent (B). The first solvent (B) has at least one structure selected from the group consisting of a structure represented by the formula (1) and a structure represented by the formula (2) and has a boiling point of less than 200° C.
    Type: Application
    Filed: December 4, 2020
    Publication date: February 9, 2023
    Applicant: NAMICS CORPORATION
    Inventors: Takashi YONEDA, Yoshitaka KAMATA, Noriyuki SAKAI, Hironobu TSUBURA, Satomi KAWAMOTO, Yoshito YAMADA
  • Patent number: 11049983
    Abstract: Provided is a conductive paste for forming bus bar electrodes having high adhesive strength with respect to a passivation film in a crystalline silicon solar cell without having a detrimental effect on the passivation film so as to affect solar cell properties. The conductive paste is a conductive paste formed on a passivation film of a solar cell, containing: (A) silver particles, (B) an organic vehicle, and (C) glass fit containing TeO2 at 1.0 mol % to 20 mol % and Bi2O3 at 10 mol % to 30 mol %.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: June 29, 2021
    Assignee: NAMICS CORPORATION
    Inventors: Seiya Konno, Noriyuki Sakai
  • Publication number: 20210162729
    Abstract: A recycling method is applied to a solar cell module which includes a cover glass, an electric cell layer, and a sealing material which closely adheres the cover glass and the electric cell layer. The recycling method includes heating an interface between the cover glass and the sealing material to a prescribed temperature range; and applying a force from a side surface of the solar cell module to the sealing material with the interface maintained at the prescribed temperature range, to peel off the sealing material and the electric cell layer from the interface thereof.
    Type: Application
    Filed: April 5, 2019
    Publication date: June 3, 2021
    Applicant: SOLAR FRONTIER K.K.
    Inventors: Noriyuki SAKAI, Hideki HARADA
  • Publication number: 20200185548
    Abstract: Provided is a conductive paste for forming bus bar electrodes having high adhesive strength with respect to a passivation film in a crystalline silicon solar cell without having a detrimental effect on the passivation film so as to affect solar cell properties. The conductive paste is a conductive paste formed on a passivation film of a solar cell, containing: (A) silver particles, (B) an organic vehicle, and (C) glass fit containing TeO2 at 1.0 mol % to 20 mol % and Bi2O3 at 10 mol % to 30 mol %.
    Type: Application
    Filed: July 12, 2017
    Publication date: June 11, 2020
    Applicant: NAMICS CORPORATION
    Inventors: Seiya KONNO, Noriyuki SAKAI
  • Patent number: 10590319
    Abstract: A composition including (a) 20 to 85 wt % of a thermally conductive silver component containing silver nano-particles having a particle diameter of 5 to 500 nanometers; (b) a polyorgano-silsesquioxane component, the polyorganosilsesquioxane component selected from the group consisting of (i) 0.5 to 12 wt % of a polyorganosilsesquioxane fine powder, (ii) 0.5 to 8 wt % of a copolymer powder containing an interlacing polymer network of (I) a polyorganosilsesquioxane and (II) a polydiorganosiloxane; and (iii) 0.5 to 12 wt % of a combination of the polyorgano-silsesquioxane fine powder and the copolymer powder; and (c) 3 to 12 wt % of a total solvent content in the form of (i) one or more solvents, (ii) a vehicle containing one or more solvents, or (iii) a combination thereof.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: March 17, 2020
    Assignee: NAMICS CORPORATION
    Inventors: Cathy Shaw Trumble, Maciej Patelka, Noriyuki Sakai, Nicholas C. Krasco
  • Patent number: 10290601
    Abstract: A method of manufacturing a bonded body in which a first body and a second body are bonded using a glass paste. The glass paste includes a crystallized glass frit (A) and a solvent (B). A remelting temperature of the crystallized glass frit (A) is higher than a crystallization temperature thereof which is higher than a glass transition temperature thereof. The method includes: applying the glass paste on at least one of the first and second bodies, bonding the first and second bodies by interposing the glass paste therebetween, heating the bonded first and second bodies to a temperature that is not lower than the crystallization temperature and lower than the remelting temperature of the crystallized glass frit (A), and obtaining the bonded body by cooling the bonded first and second bodies to a temperature that is not higher than the glass transition temperature of the crystallized glass frit.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: May 14, 2019
    Assignee: NAMICS CORPORATION
    Inventors: Raymond Dietz, Cathy Shaw Trumble, Maciej Patelka, Akito Yoshii, Noriyuki Sakai, Hiroshi Yamaguchi
  • Publication number: 20180251663
    Abstract: A composition including (a) 20 to 85 wt % of a thermally conductive silver component containing silver nano-particles having a particle diameter of 5 to 500 nanometers; (b) a polyorgano-silsesquioxane component, the polyorganosilsesquioxane component selected from the group consisting of (i) 0.5 to 12 wt % of a polyorganosilsesquioxane fine powder, (ii) 0.5 to 8 wt % of a copolymer powder containing an interlacing polymer network of (I) a polyorganosilsesquioxane and (II) a polydiorganosiloxane; and (iii) 0.5 to 12 wt % of a combination of the polyorgano-silsesquioxane fine powder and the copolymer powder; and (c) 3 to 12 wt % of a total solvent content in the form of (i) one or more solvents, (ii) a vehicle containing one or more solvents, or (iii) a combination thereof.
    Type: Application
    Filed: July 15, 2016
    Publication date: September 6, 2018
    Applicant: NAMICS CORPORATION
    Inventors: Cathy Shaw TRUMBLE, Maciej PATELKA, Noriyuki SAKAI, Nicholas C. KRASCO
  • Publication number: 20180082972
    Abstract: A method of manufacturing a bonded body in which a first body and a second body are bonded using a glass paste. The glass paste includes a crystallized glass frit (A) and a solvent (B). A remelting temperature of the crystallized glass frit (A) is higher than a crystallization temperature thereof which is higher than a glass transition temperature thereof. The method includes: applying the glass paste on at least one of the first and second bodies, bonding the first and second bodies by interposing the glass paste therebetween, heating the bonded first and second bodies to a temperature that is not lower than the crystallization temperature and lower than the remelting temperature of the crystallized glass frit (A), and obtaining the bonded body by cooling the bonded first and second bodies to a temperature that is not higher than the glass transition temperature of the crystallized glass frit.
    Type: Application
    Filed: April 6, 2016
    Publication date: March 22, 2018
    Applicant: NAMICS CORPORATION
    Inventors: Raymond DIETZ, Cathy Shaw TRUMBLE, Maciej PATELKA, Akito YOSHII, Noriyuki SAKAI, Hiroshi YAMAGUCHI
  • Patent number: 9776909
    Abstract: A glass frit having a low melting point containing (A) Ag2O, (B) V2O5, and (C) at least one first oxide selected from the group consisting of MoO3, ZnO, CuO, TiO2, Bi2O3, MnO2, MgO, Nb2O5, BaO and P2O5. The glass frit preferably contains 40 to 70% by mass of (A), 10 to 40% by mass of (B), and 0.5 to 30% by mass of (C) with respect to the total mass in terms of oxides. Furthermore, the glass frit preferably has a mass ratio (Ag2O/V2O5) of (A) to (B) of 1.8 to 3.2.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: October 3, 2017
    Assignee: NAMICS CORPORATION
    Inventors: Raymond Dietz, Maciej Patelka, Noriyuki Sakai, Hiroshi Yamaguchi
  • Publication number: 20170117424
    Abstract: A method for manufacturing a solar cell includes the following steps: a step in which a first electrode layer is formed on top of a substrate; a step in which a selenium-containing p-type CZTS light-absorbing layer is formed on top of the first electrode layer; a step in which the surface of the CZTS light-absorbing layer is brought into contact with an aqueous solution containing an organic sulfur compound, increasing the concentration of sulfur on the surface of the CZTS light-absorbing layer, and an n-type buffer layer is formed on top of CZTS light-absorbing layer; and a step in which a second electrode layer is formed on top of said buffer layer.
    Type: Application
    Filed: April 15, 2014
    Publication date: April 27, 2017
    Applicant: Solar Frontier K.K.
    Inventors: Homare HIROI, Hiroki SUGIMOTO, Takuya KATOU, Noriyuki SAKAI
  • Publication number: 20170077341
    Abstract: This solar cell is provided with a substrate (11), a first electrode layer (12) which is arranged on the substrate (11), a p-type CZTS light absorption layer (13) which is arranged on the first electrode layer (12) and which contains copper, zinc, tin, and group VI elements including sulfur and selenium, and an n-type second electrode layer (15) which is arranged on the CZTS light absorption layer (13), wherein the sulfur concentration in the group VI elements in the CZTS light absorption layer (13) increases, in the depth direction, from the side facing the second electrode layer (15) towards the side facing the first electrode layer (12).
    Type: Application
    Filed: April 23, 2015
    Publication date: March 16, 2017
    Applicant: Solar Frontier K.K.
    Inventors: Hiroki SUGIMOTO, Takuya KATOU, Noriyuki SAKAI
  • Patent number: 9577122
    Abstract: A conductive paste is provided which can form electrodes in crystalline silicon solar cells at low cost while ensuring that the electrodes exhibit low contact resistance with respect to both p-type and n-type impurity diffusion layers. The conductive paste for forming a solar cell electrode includes a silver powder, a glass frit, an additive particle and an organic vehicle, the glass frit having a glass transition point of 150 to 440° C., the additive particle including an alloy material containing 20 to 98 mass % aluminum, the conductive paste including the additive particle in an amount of 2 to 30 parts by weight with respect to 100 parts by weight of the silver powder.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: February 21, 2017
    Assignee: NAMICS CORPORATION
    Inventors: Noriyuki Sakai, Taeko Semba
  • Patent number: 9540275
    Abstract: A conductive paste including (A) conductive particles, (B) a glass frit containing substantially no lead, arsenic, tellurium, and antimony, and (C) a solvent. The glass frit (B) has a remelting temperature of 320 to 360° C., wherein the remelting temperature is indicated by a peak top of at least one endothermic peak having an endotherm of 20 J/g or more in a DSC curve as measured by a differential scanning calorimeter. The conductive paste can also include at least one metal oxide (D) selected from the group consisting of tin oxide, zinc oxide, indium oxide, and copper oxide. The glass frit (B) can further include (B-1) Ag2O, (B-2) V2O5, and (B-3) MoO3. The conductive paste can achieve binding at a relatively low temperature (such as 370° C. or lower) and maintains a bond strength at a relatively high temperature (such as 300 to 360° C.).
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: January 10, 2017
    Assignee: NAMICS CORPORATION
    Inventors: Raymond Dietz, Maciej Patelka, Cathy Shaw Trumble, Noriyuki Sakai, Hiroshi Yamaguchi
  • Publication number: 20160326044
    Abstract: A conductive paste including (A) conductive particles, (B) a glass frit containing substantially no lead, arsenic, tellurium, and antimony, and (C) a solvent. The glass frit (B) has a remelting temperature of 320 to 360° C., wherein the remelting temperature is indicated by a peak top of at least one endothermic peak having an endotherm of 20 J/g or more in a DSC curve as measured by a differential scanning calorimeter. The conductive paste can also include at least one metal oxide (D) selected from the group consisting of tin oxide, zinc oxide, indium oxide, and copper oxide. The glass frit (B) can further include (B-1) Ag2O, (B-2) V2O5, and (B-3) MoO3. The conductive paste can achieve binding at a relatively low temperature (such as 370° C. or lower) and maintains a bond strength at a relatively high temperature (such as 300 to 360° C.).
    Type: Application
    Filed: January 15, 2015
    Publication date: November 10, 2016
    Applicant: NAMICS CORPORATION
    Inventors: Raymond Dietz, Maciej Patelka, Cathy Shaw Trumble, Noriyuki Sakai, Hiroshi Yamaguchi
  • Patent number: 9457512
    Abstract: Conventional ion rechargeable batteries having an electrode layer on an electrolyte layer suffer from an impurity layer formed at the interface, degrading performance. Conventional batteries with no such impurity layer have a problem of weak interface bonding. In the present invention, in a baking process step after an electrode layer is laminated on an electrolyte layer, materials for an electrode layer and an electrolyte layer are selected such that an intermediate layer formed of a reaction product contributing to charging and discharging reactions is formed at the interface of the electrode layer and the electrolyte layer. In addition, a paste that an active material is mixed with a conductive material at a predetermined mixing ratio is used to form a positive electrode layer and a negative electrode layer. Reductions in electrode resistance and interface resistance and improvement of charging and discharging cycle characteristics are made possible.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: October 4, 2016
    Assignee: NAMICS CORPORATION
    Inventors: Mamoru Baba, Shoichi Iwaya, Hitoshi Masumura, Noriyuki Sakai, Takayuki Fujita, Hiroshi Sasagawa, Hiroshi Sato
  • Publication number: 20160190373
    Abstract: A thin film solar cell comprises a metal rear surface electrode layer formed on a substrate, a p-type CZTS light-absorbing layer formed on the electrode layer, an n-type high-resistance buffer layer containing a zinc compound as a material and formed on the p-type CZTS light-absorbing layer, and an n-type transparent electroconductive film formed on the n-type high-resistance buffer layer. When the Cu—Zn—Sn composition ratio (atom ratio) of the p-type CZTS light-absorbing layer is represented by coordinates with the Cu/(Zn+Sn) ratio shown on the horizontal axis and the Zn/Sn ratio shown on the vertical axis, the ratio is within the region formed by connecting point A (0.825, 1.108), point B (1.004, 0.905), point C (1.004, 1.108), point E (0.75, 1.6), and point D (0.65, 1.5), and the Zn/Sn ratio of the p-type CZTS light-absorbing layer surface in the n-type high-resistance buffer layer is 1.11 or less.
    Type: Application
    Filed: March 3, 2016
    Publication date: June 30, 2016
    Applicant: Solar Frontier K. K.
    Inventors: Hiroki SUGIMOTO, Noriyuki SAKAI, Homare HIROI
  • Publication number: 20160052820
    Abstract: A glass frit having a low melting point containing (A) Ag2O, (B) V2O5, and (C) at least one first oxide selected from the group consisting of MoO3, ZnO, CuO, TiO2, Bi2O3, MnO2, MgO, Nb2O5, BaO and P2O5. The glass frit preferably contains 40 to 70% by mass of (A), 10 to 40% by mass of (B), and 0.5 to 30% by mass of (C) with respect to the total mass in terms of oxides. Furthermore, the glass frit preferably has a mass ratio (Ag2O/V2O5) of (A) to (B) of 1.8 to 3.2.
    Type: Application
    Filed: January 28, 2014
    Publication date: February 25, 2016
    Applicant: NAMICS CORPORATION
    Inventors: Raymond DIETZ, Maciej PATELKA, Noriyuki SAKAI, Hiroshi YAMAGUCHI
  • Publication number: 20160049532
    Abstract: A conductive paste is provided which can form electrodes in crystalline silicon solar cells at low cost while ensuring that the electrodes exhibit low contact resistance with respect to both p-type and n-type impurity diffusion layers. The conductive paste for forming a solar cell electrode includes a silver powder, a glass frit, an additive particle and an organic vehicle, the glass frit having a glass transition point of 150 to 440° C., the additive particle including an alloy material containing 20 to 98 mass % aluminum, the conductive paste including the additive particle in an amount of 2 to 30 parts by weight with respect to 100 parts by weight of the silver powder.
    Type: Application
    Filed: March 6, 2014
    Publication date: February 18, 2016
    Applicant: NAMICS CORPORATION
    Inventors: Noriyuki SAKAI, Taeko SEMBA
  • Patent number: 9263727
    Abstract: This is to provide an all solid state secondary battery which can be produced by an industrially employable method capable of mass-production and has excellent secondary battery characteristics.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: February 16, 2016
    Assignee: NAMICS CORPORATION
    Inventors: Mamoru Baba, Shoichi Iwaya, Hitoshi Masumura, Hiroshi Sato, Hiroshi Sasagawa, Noriyuki Sakai, Takayuki Fujita
  • Patent number: 9236594
    Abstract: In multilayer wholly solid lithium ion secondary batteries, a laminate having a collector layer of material with high conductivity superimposed on an active material layer has been disposed so as to attain a lowering of battery impedance. Consequently, in the fabrication of each of positive electrode layer and negative electrode layer, stacking of three layers consisting of an active material layer, a collector layer and an active material layer has been needed, thereby posing the problem of complex processing and high production cost. In the invention, a positive electrode layer and a negative electrode layer are fabricated from paste consisting of active material mixed with conductive substance in a given mixing ratio, and no collector layer is disposed. This realizes process simplification and manufacturing cost reduction without deterioration of battery performance and has also been effective in enhancing of battery performance, such as improvement to cycle characteristics.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: January 12, 2016
    Assignee: NAMICS CORPORATION
    Inventors: Shoichi Iwaya, Hitoshi Masumura, Noriyuki Sakai, Takayuki Fujita, Hiroshi Sasagawa, Hiroshi Sato