Patents by Inventor Norlito Baytan

Norlito Baytan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210134532
    Abstract: Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.
    Type: Application
    Filed: November 16, 2020
    Publication date: May 6, 2021
    Inventors: Arthur S. Morris, III, Dana DeReus, Norlito Baytan
  • Patent number: 10840026
    Abstract: Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: November 17, 2020
    Assignee: WISPRY, INC.
    Inventors: Arthur S. Morris, III, Dana DeReus, Norlito Baytan
  • Publication number: 20190362899
    Abstract: Systems, devices, and methods for micro-electro-mechanical system (MEMS) tunable capacitors can include a fixed actuation electrode attached to a substrate, a fixed capacitive electrode attached to the substrate, and a movable component positioned above the substrate and movable with respect to the fixed actuation electrode and the fixed capacitive electrode. The movable component can include a movable actuation electrode positioned above the fixed actuation electrode and a movable capacitive electrode positioned above the fixed capacitive electrode. At least a portion of the movable capacitive electrode can be spaced apart from the fixed capacitive electrode by a first gap, and the movable actuation electrode can be spaced apart from the fixed actuation electrode by a second gap that is larger than the first gap.
    Type: Application
    Filed: July 15, 2019
    Publication date: November 28, 2019
    Inventors: Arthur S. Morris, III, Dana DeReus, Norlito Baytan
  • Patent number: 8148790
    Abstract: Thin film encapsulation devices and methods for MEMS devices and packaging are provided. For a MEMS device encapsulated by a sacrificial layer, a lid layer can be deposited over the MEMS device without touching the MEMS device. The lid layer can be patterned and etched with a distribution of release etch holes, which provide access to the sacrificial layer encapsulating the MEMS device. The sacrificial material can be removed through the release etch holes, and the release etch holes can be filled with a seal layer. The seal layer can be removed from the substrate except where it seals the etch holes, leaving a series of plugs that can prevent other materials from entering the MEMS device cavity. In addition, a seal metal layer can be deposited and patterned so that it covers and encloses the plugged etch holes, and a barrier layer can cover the entire encapsulation structure.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: April 3, 2012
    Assignee: Wispry, Inc.
    Inventors: Arthur S. Morris, III, Li Sun, Norlito Baytan
  • Publication number: 20050100283
    Abstract: Numerous novel structures and methods are presented for their ability to correct angular and offset alignment errors caused by thermal distortion of a device formed out of dissimilar materials, such as a movable platform and waveguide coupled to a fixed platform and another waveguide. A flexure connected between two platforms corrects offset alignment errors along the centerline axis of the flexure. Thermal distortion is corrected also by varying the relative size of the two platforms and the addition of slots and/or extraneous waveguides. A waveguide may be sandwiched between two matching materials, with or without an extra thermal compensation layer portion. A method uses simple processes to build a substrate with matching waveguides on each side of the substrate. Another simple method creates a suspended structure by using simple semiconductor processes.
    Type: Application
    Filed: November 12, 2004
    Publication date: May 12, 2005
    Inventors: Ying Hsu, Norlito Baytan, Shauhwa Cuan
  • Publication number: 20050063639
    Abstract: Numerous novel structures and methods are presented for their ability to correct angular and offset alignment errors caused by thermal distortion of a device formed out of dissimilar materials, such as a movable platform and waveguide coupled to a fixed platform and another waveguide. A flexure connected between two platforms corrects offset alignment errors along the centerline axis of the flexure. Thermal distortion is corrected also by varying the relative size of the two platforms and the addition of slots and/or extraneous waveguides. A waveguide may be sandwiched between two matching materials, with or without an extra thermal compensation layer portion. A method uses simple processes to build a substrate with matching waveguides on each side of the substrate. Another simple method creates a suspended structure by using simple semiconductor processes.
    Type: Application
    Filed: October 13, 2004
    Publication date: March 24, 2005
    Inventors: Ying Hsu, Norlito Baytan, Shauhwa Cuan
  • Patent number: 6836583
    Abstract: Numerous novel structures and methods are presented for their ability to correct angular and offset alignment errors caused by thermal distortion of a device formed out of dissimilar materials, such as a movable platform and waveguide coupled to a fixed platform and another waveguide. A flexure connected between two platforms corrects offset alignment errors along the centerline axis of the flexure. Thermal distortion is corrected also by varying the relative size of the two platforms and the addition of slots and/or extraneous waveguides. A waveguide may be sandwiched between two matching materials, with or without an extra thermal compensation layer portion. A method uses simple processes to build a substrate with matching waveguides on each side of the substrate. Another simple method creates a suspended structure by using simple semiconductor processes.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: December 28, 2004
    Assignee: Newport Opticom. Inc.
    Inventors: Ying Wen Hsu, Norlito Baytan, Shauhwa Cuan
  • Patent number: 6807331
    Abstract: Numerous novel structures and methods are presented for their ability to correct angular and offset alignment errors caused by thermal distortion of a device formed out of dissimilar materials, such as a movable platform and waveguide coupled to a fixed platform and another waveguide. A flexure connected between two platforms corrects offset alignment errors along the centerline axis of the flexure. Thermal distortion is corrected also by varying the relative size of the two platforms and the addition of slots and/or extraneous waveguides. A waveguide may be sandwiched between two matching materials, with or without an extra thermal compensation layer portion. A method uses simple processes to build a substrate with matching waveguides on each side of the substrate. Another simple method creates a suspended structure by using simple semiconductor processes.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: October 19, 2004
    Assignee: Newport Opticom, Inc.
    Inventors: Ying Wen Hsu, Norlito Baytan, Shauhwa Cuan
  • Publication number: 20040179768
    Abstract: Numerous novel structures and methods are presented for their ability to correct angular and offset alignment errors caused by thermal distortion of a device formed out of dissimilar materials, such as a movable platform and waveguide coupled to a fixed platform and another waveguide. A flexure connected between two platforms corrects offset alignment errors along the centerline axis of the flexure. Thermal distortion is corrected also by varying the relative size of the two platforms and the addition of slots and/or extraneous waveguides. A waveguide may be sandwiched between two matching materials, with or without an extra thermal compensation layer portion. A method uses simple processes to build a substrate with matching waveguides on each side of the substrate. Another simple method creates a suspended structure by using simple semiconductor processes.
    Type: Application
    Filed: March 30, 2004
    Publication date: September 16, 2004
    Applicant: NEWPORT OPTICOM, INC.
    Inventors: Ying Wen Hsu, Norlito Baytan, Shauhwa Cuan
  • Publication number: 20020146195
    Abstract: Numerous novel structures and methods are presented for their ability to correct angular and offset alignment errors caused by thermal distortion of a device formed out of dissimilar materials, such as a movable platform and waveguide coupled to a fixed platform and another waveguide. A flexure connected between two platforms corrects offset alignment errors along the centerline axis of the flexure. Thermal distortion is corrected also by varying the relative size of the two platforms and the addition of slots and/or extraneous waveguides. A waveguide may be sandwiched between two matching materials, with or without an extra thermal compensation layer portion. A method uses simple processes to build a substrate with matching waveguides on each side of the substrate. Another simple method creates a suspended structure by using simple semiconductor processes.
    Type: Application
    Filed: February 8, 2002
    Publication date: October 10, 2002
    Inventors: Ying Wen Hsu, Norlito Baytan, Shauhwa Cuan