Patents by Inventor Norman R. Padgett

Norman R. Padgett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240092190
    Abstract: Techniques control a utility vehicle. Such techniques involve storing electric power in a lithium battery of the utility vehicle. Such techniques further involve operating a motor controller of the utility vehicle in a normal mode in which the motor controller provides electric power from a lithium battery of the utility vehicle to an electric motor of the utility vehicle to turn one or more ground engaging members of the utility vehicle. Such techniques further involve, after operating the motor controller in the normal operating mode, operating the motor controller in a walkaway mode in which the motor controller configures the electric motor to provide braking torque.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Robert Charles Bradley, Patrick Dwaine Warden
  • Patent number: 11865927
    Abstract: Techniques control a utility vehicle. Such techniques involve storing electric power in a lithium battery of the utility vehicle. Such techniques further involve operating a motor controller of the utility vehicle in a normal mode in which the motor controller provides electric power from a lithium battery of the utility vehicle to an electric motor of the utility vehicle to turn one or more ground engaging members of the utility vehicle. Such techniques further involve, after operating the motor controller in the normal operating mode, operating the motor controller in a walkaway mode in which the motor controller configures the electric motor to provide braking torque.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: January 9, 2024
    Assignee: Textron Innovations Inc.
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Robert Charles Bradley, Patrick Dwaine Warden
  • Publication number: 20220227241
    Abstract: Techniques control a utility vehicle. Such techniques involve storing electric power in a lithium battery of the utility vehicle. Such techniques further involve operating a motor controller of the utility vehicle in a normal mode in which the motor controller provides electric power from a lithium battery of the utility vehicle to an electric motor of the utility vehicle to turn one or more ground engaging members of the utility vehicle. Such techniques further involve, after operating the motor controller in the normal operating mode, operating the motor controller in a walkaway mode in which the motor controller configures the electric motor to provide braking torque.
    Type: Application
    Filed: April 7, 2022
    Publication date: July 21, 2022
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Robert Charles Bradley, Patrick Dwaine Warden
  • Patent number: 11325482
    Abstract: Techniques involve controlling battery access on a utility vehicle. Such techniques involve monitoring status of input signals from a group comprising: a lithium battery system, a keyed switch, and a charging receptacle, comparing the status of the input signals to timeout settings stored in memory of the motion control system, initiating a timer based on comparison of the input signals to the timeout settings, and disconnecting at least one direct current (DC) path between a lithium battery interface and a power distribution interface of the utility vehicle in response to expiration of the timer. Such techniques further involve, after disconnecting, reconnecting the at least one DC current path between the lithium battery interface and the power distribution interface in response to a change in status of at least one of the input signals. Such techniques may be performed by a motion control system of the utility vehicle.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: May 10, 2022
    Assignee: Textron Innovations Inc.
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Robert Charles Bradley, Patrick Dwaine Warden
  • Patent number: 11124074
    Abstract: A control system for handling a fault condition on a utility vehicle includes a lithium battery, a contactor configured to control electrical access to the lithium battery, and control circuitry coupled with the lithium battery and the contactor. The control circuitry is configured to detect, while the contactor is closed to provide a set of loads of the utility vehicle with electrical access to the lithium battery, onset of a fault condition. The control circuitry is further configured to perform, in response to detection of the onset of the fault condition, a set of remedial operations to address the fault condition. The control circuitry is further configured to perform, after a predefined amount of time has elapsed since the onset of the fault condition, a subsequent operation which opens the contactor if the fault condition remains and maintains closure of the contactor if the fault condition does not remain.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: September 21, 2021
    Assignee: Textron Innovations Inc.
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Luke Anthony O'Hara
  • Patent number: 10933755
    Abstract: Techniques involve managing lithium battery access on a utility vehicle. In accordance with such techniques, a wakeup circuit includes a set of inputs, a set of outputs, and control logic coupled with the set of inputs and the set of outputs. The control logic is constructed and arranged to, in response to detecting a wakeup event from circuitry of the utility vehicle via the set of inputs, close a switching apparatus of the utility vehicle via the set of outputs to connect a lithium battery of the utility vehicle to a set of loads of the utility vehicle. The control logic is further constructed and arranged to, in response to detecting a sleep event, open the switching apparatus via the set of outputs to disconnect the lithium battery of the utility vehicle from the set of loads of the utility vehicle.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: March 2, 2021
    Assignee: Textron Innovations Inc.
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Robert Charles Bradley, Patrick Dwaine Warden
  • Publication number: 20200114847
    Abstract: Techniques involve controlling battery access on a utility vehicle. Such techniques involve monitoring status of input signals from a group comprising: a lithium battery system, a keyed switch, and a charging receptacle, comparing the status of the input signals to timeout settings stored in memory of the motion control system, initiating a timer based on comparison of the input signals to the timeout settings, and disconnecting at least one direct current (DC) path between a lithium battery interface and a power distribution interface of the utility vehicle in response to expiration of the timer. Such techniques further involve, after disconnecting, reconnecting the at least one DC current path between the lithium battery interface and the power distribution interface in response to a change in status of at least one of the input signals. Such techniques may be performed by a motion control system of the utility vehicle.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Robert Charles Bradley, Patrick Dwaine Warden
  • Publication number: 20200062123
    Abstract: A control system for handling a fault condition on a utility vehicle includes a lithium battery, a contactor configured to control electrical access to the lithium battery, and control circuitry coupled with the lithium battery and the contactor. The control circuitry is configured to detect, while the contactor is closed to provide a set of loads of the utility vehicle with electrical access to the lithium battery, onset of a fault condition. The control circuitry is further configured to perform, in response to detection of the onset of the fault condition, a set of remedial operations to address the fault condition. The control circuitry is further configured to perform, after a predefined amount of time has elapsed since the onset of the fault condition, a subsequent operation which opens the contactor if the fault condition remains and maintains closure of the contactor if the fault condition does not remain.
    Type: Application
    Filed: October 29, 2019
    Publication date: February 27, 2020
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Luke Anthony O'Hara
  • Patent number: 10471831
    Abstract: A control system for handling a fault condition on a utility vehicle includes a lithium battery, a contactor configured to control electrical access to the lithium battery, and control circuitry coupled with the lithium battery and the contactor. The control circuitry is configured to detect, while the contactor is closed to provide a set of loads of the utility vehicle with electrical access to the lithium battery, onset of a fault condition. The control circuitry is further configured to perform, in response to detection of the onset of the fault condition, a set of remedial operations to address the fault condition. The control circuitry is further configured to perform, after a predefined amount of time has elapsed since the onset of the fault condition, a subsequent operation which opens the contactor if the fault condition remains and maintains closure of the contactor if the fault condition does not remain.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: November 12, 2019
    Assignee: Textron Innovations Inc.
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Luke Anthony O'Hara
  • Publication number: 20190263340
    Abstract: Techniques involve managing lithium battery access on a utility vehicle. In accordance with such techniques, a wakeup circuit includes a set of inputs, a set of outputs, and control logic coupled with the set of inputs and the set of outputs. The control logic is constructed and arranged to, in response to detecting a wakeup event from circuitry of the utility vehicle via the set of inputs, close a switching apparatus of the utility vehicle via the set of outputs to connect a lithium battery of the utility vehicle to a set of loads of the utility vehicle. The control logic is further constructed and arranged to, in response to detecting a sleep event, open the switching apparatus via the set of outputs to disconnect the lithium battery of the utility vehicle from the set of loads of the utility vehicle.
    Type: Application
    Filed: May 9, 2019
    Publication date: August 29, 2019
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Robert Charles Bradley, Patrick Dwaine Warden
  • Patent number: 10322688
    Abstract: A battery management system (BMS) controls lithium battery access on a utility vehicle. The BMS includes a battery interface that couples with a lithium battery, a load interface that couples with a set of loads of the utility vehicle, and control circuitry coupled with the battery interface and the load interface. The control circuitry mechanically disconnects the battery interface from the load interface in response to a sleep event. Additionally, after the battery interface is mechanically disconnected from the load interface, the control circuitry mechanically reconnects the battery interface to the load interface in response to a wakeup event. Furthermore, after the battery interface is mechanically reconnected to the load interface, the control circuitry maintains connection between the battery interface and the load interface to convey power from the lithium battery to the set of loads of the utility vehicle through the battery interface and the load interface.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: June 18, 2019
    Assignee: Textron Innovations Inc.
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Robert Charles Bradley, Patrick Dwaine Warden
  • Patent number: 10195953
    Abstract: A charging system charges a lithium battery of a utility vehicle. The charging system includes a receptacle configured to couple with an external charger, a lithium battery configured to provide lithium battery power to a set of electrical loads of the utility vehicle, and control circuitry coupled with the receptacle and the lithium battery. The control circuitry is configured to detect connection between the external charger and the receptacle and, in response to detecting connection between the external charger and the receptacle, ascertain a charging state of the lithium battery. The control circuitry is further configured to output, based on the charging state, a control signal to the external charger through the receptacle, the control signal being configured to control charging output from the external charger to charge the lithium battery.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: February 5, 2019
    Assignee: Textron Innovations Inc.
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden
  • Patent number: 10017169
    Abstract: A motion control system controls movement of a utility vehicle. The motion control system includes an electric brake that (i) provides mechanical resistance which inhibits a motor of the utility vehicle from turning when the electric brake is unpowered and (ii) removes the mechanical resistance to allow the motor of the utility vehicle to turn when power is provided to the electric brake. The motion control system further includes a lithium BMS having a contactor that closes to provide electrical access to a lithium battery and opens to remove electrical access to the lithium battery. The motion control system further includes control circuitry coupled with the electric brake and the lithium BMS. The control circuitry directs the lithium BMS to maintain closure of the contactor to provide power from the lithium battery to the electric brake in response to receipt of a tow signal.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: July 10, 2018
    Assignee: Textron Innovations Inc.
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Robert Charles Bradley, Patrick Dwaine Warden
  • Publication number: 20180186355
    Abstract: A motion control system controls movement of a utility vehicle. The motion control system includes an electric brake that (i) provides mechanical resistance which inhibits a motor of the utility vehicle from turning when the electric brake is unpowered and (ii) removes the mechanical resistance to allow the motor of the utility vehicle to turn when power is provided to the electric brake. The motion control system further includes a lithium BMS having a contactor that closes to provide electrical access to a lithium battery and opens to remove electrical access to the lithium battery. The motion control system further includes control circuitry coupled with the electric brake and the lithium BMS. The control circuitry directs the lithium BMS to maintain closure of the contactor to provide power from the lithium battery to the electric brake in response to receipt of a tow signal.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 5, 2018
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Robert Charles Bradley, Patrick Dwaine Warden
  • Publication number: 20180186241
    Abstract: A control system for handling a fault condition on a utility vehicle includes a lithium battery, a contactor configured to control electrical access to the lithium battery, and control circuitry coupled with the lithium battery and the contactor. The control circuitry is configured to detect, while the contactor is closed to provide a set of loads of the utility vehicle with electrical access to the lithium battery, onset of a fault condition. The control circuitry is further configured to perform, in response to detection of the onset of the fault condition, a set of remedial operations to address the fault condition. The control circuitry is further configured to perform, after a predefined amount of time has elapsed since the onset of the fault condition, a subsequent operation which opens the contactor if the fault condition remains and maintains closure of the contactor if the fault condition does not remain.
    Type: Application
    Filed: January 30, 2017
    Publication date: July 5, 2018
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Luke Anthony O'Hara
  • Publication number: 20180186316
    Abstract: A battery management system (BMS) controls lithium battery access on a utility vehicle. The BMS includes a battery interface that couples with a lithium battery, a load interface that couples with a set of loads of the utility vehicle, and control circuitry coupled with the battery interface and the load interface. The control circuitry mechanically disconnects the battery interface from the load interface in response to a sleep event. Additionally, after the battery interface is mechanically disconnected from the load interface, the control circuitry mechanically reconnects the battery interface to the load interface in response to a wakeup event. Furthermore, after the battery interface is mechanically reconnected to the load interface, the control circuitry maintains connection between the battery interface and the load interface to convey power from the lithium battery to the set of loads of the utility vehicle through the battery interface and the load interface.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 5, 2018
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden, Robert Charles Bradley, Patrick Dwaine Warden
  • Publication number: 20180186244
    Abstract: A charging system charges a lithium battery of a utility vehicle. The charging system includes a receptacle configured to couple with an external charger, a lithium battery configured to provide lithium battery power to a set of electrical loads of the utility vehicle, and control circuitry coupled with the receptacle and the lithium battery. The control circuitry is configured to detect connection between the external charger and the receptacle and, in response to detecting connection between the external charger and the receptacle, ascertain a charging state of the lithium battery. The control circuitry is further configured to output, based on the charging state, a control signal to the external charger through the receptacle, the control signal being configured to control charging output from the external charger to charge the lithium battery.
    Type: Application
    Filed: January 30, 2017
    Publication date: July 5, 2018
    Inventors: Arthur James Harvey, Norman R. Padgett, John Ledden
  • Patent number: 7778746
    Abstract: An apparatus and method for a remote diagnostic system for motorized vehicles. Apparatus according to this aspect of the invention includes a base station having a processor associated with a transceiver and a remote unit installed in a vehicle. The remote unit includes a controller associated with a transceiver, where the controller gathers diagnostic data. The remote unit controller transmits a vehicle identification signal in conjunction with diagnostic data to the base station transceiver such that the base station processor monitors the diagnostic data for the vehicle. Another aspect of the invention further includes a mapping processor associated with a memory. The memory stores a virtual map of a local operating area having areas that are allowable and restricted. The controller is coupled to the mapping processor and a GPS (Global Positioning System) receiver is coupled to the mapping processor.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: August 17, 2010
    Assignee: Club Car, Inc.
    Inventors: Paul W. McLeod, Kenneth McClymonds, George T. Hummert, Norman R. Padgett, Russell King
  • Publication number: 20030236601
    Abstract: An apparatus and method for a remote diagnostic system for motorized vehicles. Apparatus according to this aspect of the invention includes a base station having a processor associated with a transceiver and a remote unit installed in a vehicle. The remote unit includes a controller associated with a transceiver, where the controller gathers diagnostic data. The remote unit controller transmits a vehicle identification signal in conjunction with diagnostic data to the base station transceiver such that the base station processor monitors the diagnostic data for the vehicle.
    Type: Application
    Filed: January 22, 2003
    Publication date: December 25, 2003
    Applicant: Club Car, Inc.
    Inventors: Paul W. McLeod, Ken McClymonds, George T. Hummert, Norman R. Padgett, Russell King