Patents by Inventor Norton B. Gilula

Norton B. Gilula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7348173
    Abstract: The soporific activity of cis-9,10-octadecenoamide and other soporific fatty acid primary amides is neutralized by hydrolysis in the presence of fatty-acid amide hydrolase (FAAH). Hydrolysis of cis-9,10-octadecenoamide by FAAH leads to the formation of oleic acid, a compound without soporific activity. FAAH has be isolated and the gene encoding FAAH has been cloned, sequenced, and used to express recombinant FAAH. Inhibitors of FAAH are disclosed to block the hydrolase activity.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: March 25, 2008
    Assignee: The Scripps Research Institute
    Inventors: Norton B. Gilula, Benjamin F. Cravatt, Richrd A. Lerner
  • Publication number: 20040265958
    Abstract: The soporific activity of cis-9,10-octadecenoamide and other soporific fatty acid primary amides is neutralized by hydrolysis in the presence of fatty-acid amide hydrolase (FAAH). Hydrolysis of cis-9,10-octadecenoamide by FAAH leads to the formation of oleic acid, a compound without soporific activity. FAAH has be isolated and the gene encoding FAAH has been cloned, sequenced, and used to express recombinant FAAH. Inhibitors of FAAH are disclosed to block the hydrolase activity.
    Type: Application
    Filed: February 26, 2004
    Publication date: December 30, 2004
    Applicant: The Scripps Research Institute
    Inventors: Norton B. Gilula, Benjamin F. Cravatt, Richrd A. Lerner
  • Patent number: 6699682
    Abstract: The soporific activity of cis-9,10-octadecenoamide and other soporific fatty acid primary amides is neutralized by hydrolysis in the presence of fatty-acid amide hydrolase (FAAH). Hydrolysis of cis-9,10-octadecenoamide by FAAH leads to the formation of oleic acid, a compound without soporific activity. FAAH has be isolated and the gene encoding FAAH has been cloned, sequenced, and used to express recombinant FAAH. Inhibitors of FAAH are disclosed to block the hydrolase activity.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: March 2, 2004
    Assignee: The Scripps Research Institute
    Inventors: Norton B. Gilula, Benjamin F. Cravatt, Richrd A. Lerner
  • Publication number: 20020187542
    Abstract: The soporific activity of cis-9,10-octadecenoamide and other soporific fatty acid primary amides is neutralized by hydrolysis in the presence of fatty-acid amide hydrolase (FAAH). Hydrolysis of cis-9,10-octadecenoamide by FAAH leads to the formation of oleic acid, a compound without soporific activity. FAAH has be isolated and the gene encoding FAAH has been cloned, sequenced, and used to express recombinant FAAH. Inhibitors of FAAH are disclosed to block the hydrolase activity.
    Type: Application
    Filed: June 28, 2001
    Publication date: December 12, 2002
    Applicant: The Scripps Research Institute
    Inventors: Norton B. Gilula, Benjamin F. Cravatt, Richard A. Lerner
  • Patent number: 6271015
    Abstract: The soporific activity of cis-9,10-octadecenoamide and other soporific fatty acid primary(amides is neutralized by hydrolysis in the presence of fatty-acid amide hydrolase (FAAH). Hydrolysis of cis-9,10-octadecenoamide by FAAH leads to the formation of oleic acid, a compound without soporific activity. FAAH has be isolated and the gene encoding FAAH has been cloned, sequenced, and used to express recombinant FAAH. Inhibitors of FAAH are disclosed to block the hydrolase activity.
    Type: Grant
    Filed: November 4, 1996
    Date of Patent: August 7, 2001
    Assignee: The Scripps Research Institute
    Inventors: Norton B. Gilula, Benjamin F. Cravatt, Richard A. Lerner
  • Patent number: 6251931
    Abstract: Oleamide is an endogenous fatty acid primary amide that possesses sleep-inducing properties in animals and has been shown to effect seratonergic systems and block gap junction communication in a structurally specific manner. Certain agents can serve both as an oleamide agonist and as an inhibitor of fatty acid amide hydrolase. Fatty acid amide hydrolase is responsible for the rapid inactivation of oleamide in vivo. The structural features of oleamide required for inhibition of gap junction-mediated chemical and electrical transmission in rat glial cells are defined. Effective inhibitors fall into two classes of fatty acid primary amides of which oleamide and arachidonamide are the prototypical members. Of these two, oleamide constitutes the most effective and its structural requirements for inhibition of the gap junction are well defined.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: June 26, 2001
    Assignee: The Scripps Research Institute
    Inventors: Dale L. Boger, Norton B. Gilula, Richard A. Lerner, Benjamin F. Cravatt