Patents by Inventor Nourhan Eid

Nourhan Eid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240036263
    Abstract: An optical coupler configured to couple light along a propagation direction is disclosed. The optical coupler includes a lower area. The lower area includes a waveguide including a first end, a second end, and an inversely tapered portion. The optical coupler includes an intermediary area arranged over, in a vertical direction, the lower area. The intermediary area includes two or more intermediary elements. The optical coupler includes an upper area arranged over the intermediary area. The upper area includes one or more upper elements.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 1, 2024
    Applicants: Broadcom International Pte. Ltd., Broadcom International Pte. Ltd.
    Inventors: Nourhan Eid, Shiyun Lin, Naser Dalvand, Vivek Raghunathan
  • Patent number: 11784463
    Abstract: A tunable laser for a transceiver includes a silicon photonics substrate, first and second patterned regions each being defined in the substrate a step lower than a flat surface region of the substrate, first and second laser diode chips arranged in the first and second patterned regions, the patterned regions being configured to align the gain regions of the first and second laser diode chips with integrated couplers formed in the substrate adjacent to the first and second patterned regions to facilitate flip-bonding the first and second laser diode chips within the patterned regions, and a tuning filter coupled to the first laser diode chip and the second laser diode chip via the integrated couplers. The tuning filter is configured to receive laser light from each of the first and second laser diode chips and generate a laser output having a gain determined by each of the gain regions.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: October 10, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Radhakrishnan L. Nagarajan, Masaki Kato, Nourhan Eid, Kenneth Ling Wong
  • Publication number: 20220263289
    Abstract: A tunable laser for a transceiver includes a silicon photonics substrate, first and second patterned regions each being defined in the substrate a step lower than a flat surface region of the substrate, first and second laser diode chips arranged in the first and second patterned regions, the patterned regions being configured to align the gain regions of the first and second laser diode chips with integrated couplers formed in the substrate adjacent to the first and second patterned regions to facilitate flip-bonding the first and second laser diode chips within the patterned regions, and a tuning filter coupled to the first laser diode chip and the second laser diode chip via the integrated couplers. The tuning filter is configured to receive laser light from each of the first and second laser diode chips and generate a laser output having a gain determined by each of the gain regions.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 18, 2022
    Inventors: Radhakrishnan L. NAGARAJAN, Masaki Kato, Nourhan Eid, Kenneth Ling Wong
  • Patent number: 11329452
    Abstract: A tunable laser device based on silicon photonics includes a substrate configured with a patterned region comprising one or more vertical stoppers, an edge stopper facing a first direction, a first alignment feature structure formed in the patterned region along the first direction, and a bond pad disposed between the vertical stoppers. Additionally, the tunable laser includes an integrated coupler built in the substrate located at the edge stopper and a laser diode chip including a gain region covered by a P-type electrode and a second alignment feature structure formed beyond the P-type electrode. The laser diode chip is flipped to rest against the one or more vertical stoppers with the P-type electrode attached to the bond pad and the gain region coupled to the integrated coupler. Moreover, the tunable laser includes a tuning filter fabricated in the substrate and coupled via a wire waveguide to the integrated coupler.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: May 10, 2022
    Assignee: Marvell Asia Pte Ltd.
    Inventors: Radhakrishnan L. Nagarajan, Masaki Kato, Nourhan Eid, Kenneth Ling Wong
  • Publication number: 20200212651
    Abstract: A tunable laser device based on silicon photonics includes a substrate configured with a patterned region comprising one or more vertical stoppers, an edge stopper facing a first direction, a first alignment feature structure formed in the patterned region along the first direction, and a bond pad disposed between the vertical stoppers. Additionally, the tunable laser includes an integrated coupler built in the substrate located at the edge stopper and a laser diode chip including a gain region covered by a P-type electrode and a second alignment feature structure formed beyond the P-type electrode. The laser diode chip is flipped to rest against the one or more vertical stoppers with the P-type electrode attached to the bond pad and the gain region coupled to the integrated coupler. Moreover, the tunable laser includes a tuning filter fabricated in the substrate and coupled via a wire waveguide to the integrated coupler.
    Type: Application
    Filed: March 13, 2020
    Publication date: July 2, 2020
    Inventors: Radhakrishnan L. NAGARAJAN, Masaki KATO, Nourhan EID, Kenneth Ling WONG
  • Publication number: 20200144790
    Abstract: A tunable laser device based on silicon photonics includes a substrate configured with a patterned region comprising one or more vertical stoppers, an edge stopper facing a first direction, a first alignment feature structure formed in the patterned region along the first direction, and a bond pad disposed between the vertical stoppers. Additionally, the tunable laser includes an integrated coupler built in the substrate located at the edge stopper and a laser diode chip including a gain region covered by a P-type electrode and a second alignment feature structure formed beyond the P-type electrode. The laser diode chip is flipped to rest against the one or more vertical stoppers with the P-type electrode attached to the bond pad and the gain region coupled to the integrated coupler. Moreover, the tunable laser includes a tuning filter fabricated in the substrate and coupled via a wire waveguide to the integrated coupler.
    Type: Application
    Filed: November 2, 2018
    Publication date: May 7, 2020
    Inventors: Radhakrishnan L. NAGARAJAN, Masaki KATO, Nourhan EID, Kenneth Ling WONG
  • Patent number: 10637208
    Abstract: A tunable laser device based on silicon photonics includes a substrate configured with a patterned region comprising one or more vertical stoppers, an edge stopper facing a first direction, a first alignment feature structure formed in the patterned region along the first direction, and a bond pad disposed between the vertical stoppers. Additionally, the tunable laser includes an integrated coupler built in the substrate located at the edge stopper and a laser diode chip including a gain region covered by a P-type electrode and a second alignment feature structure formed beyond the P-type electrode. The laser diode chip is flipped to rest against the one or more vertical stoppers with the P-type electrode attached to the bond pad and the gain region coupled to the integrated coupler. Moreover, the tunable laser includes a tuning filter fabricated in the substrate and coupled via a wire waveguide to the integrated coupler.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: April 28, 2020
    Assignee: INPHI CORPORATION
    Inventors: Radhakrishnan L. Nagarajan, Masaki Kato, Nourhan Eid, Kenneth Ling Wong
  • Patent number: 8787754
    Abstract: A method of estimating nonlinear transmission impairments of an Optical Channel (OCh) trail in an optical communications network. A per-span nonlinear field variance is calculated for each span of the trail. The per-span nonlinear field variance represents nonlinearly induced noise due to the transmission impairments of that span. The nonlinearly induced noise being imparted to a signal transmitted through the trail and detected by the receiver. A respective covariance between the nonlinear fields contributed by each span pair of the OCh trail is computed. The covariance represents the correlation of the nonlinearly induced noise imparted to the signal within the first span of a span pair with the nonlinearly induced noise imparted to the signal within the second span of the pair. A covariance matrix is populated using the computed per-span variance values and covariance values. A total nonlinear field variance is computed by summing over the covariance matrix elements.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: July 22, 2014
    Assignee: Ciena Corporation
    Inventors: Douglas James Beckett, Nourhan Eid, Michael Reimer, Xuefeng Tang, Maurice O'Sullivan