Patents by Inventor Nur A. Touba

Nur A. Touba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8949299
    Abstract: A method and apparatus for generating a pseudorandom sequence using a hybrid ring generator with low hardware cost. When a primitive polynomial over GF(2) is selected as the characteristic polynomial f(x) to construct a hybrid ring generator, the circuit implementing f(x) will generate a maximum-length sequence (m-sequence). The hybrid ring generator offers unmatched benefits over existing linear feedback shift register (LFSR) based maximum-length sequence generators (MLSGs). Assume k 2-input XOR gates are required in a standard or modular LFSR design. These benefits include requiring only (k+1)/2 2-input XOR gates, having at most one level of a 2-input XOR gate between any pair of flip-flops, enabling the output of each flip-flop to drive at most 2 fanout nodes, and creating a highly regular structure that makes the new design more layout and timing friendly.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: February 3, 2015
    Assignee: Syntest Technologies, Inc.
    Inventors: Laung-Terng Wang, Nur A. Touba
  • Publication number: 20140143623
    Abstract: A low-pin-count scan compression method and apparatus for reducing test data volume and test application time in a scan-based integrated circuit. The scan-based integrated circuit contains one or more scan chains, each scan chain comprising one or more scan cells coupled in series. The method and apparatus includes a programmable pipelined decompressor comprising one or more shift registers, a combinational logic network, and an optional scan connector. The programmable pipelined decompressor decompresses a compressed scan pattern on its compressed scan inputs and drives the generated decompressed scan pattern at the output of the programmable pipelined decompressor to the scan data inputs of the scan-based integrated circuit. Any input constraints imposed by said combinational logic network are incorporated into an automatic test pattern generation (ATPG) program for generating the compressed scan pattern for one or more selected faults in one-step.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Applicant: Syntest Technologies, Inc.
    Inventors: Nur A. TOUBA, Laung-Terng WANG, Shianling WU
  • Patent number: 8522096
    Abstract: A method and apparatus for testing a scan-based 3D integrated circuit (3DIC) using time-division demultiplexing/multiplexing allowing for high-data-rate scan patterns applied at input/output pads converting into low-data-rate scan patterns applied to each embeddded module in the 3DIC. A set of 3D design guidelines is proposed to reduce the number of test times and the number of through-silicon vias (TSVs) required for both pre-bond testing and post-bond testing. The technique allows reuse of scan patterns developed for pre-bond testing of each die (layer) for post-bond testing of the whole 3DIC. It further reduces test application time without concerns for I/O pad count limit and risks for fault coverage loss.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: August 27, 2013
    Assignee: Syntest Technologies, Inc.
    Inventors: Laung-Terng Wang, Nur A. Touba, Michael S. Hsiao, Zhigang Jiang, Shianling Wu
  • Patent number: 8418100
    Abstract: A method for performing robust scan synthesis for soft-error protection on a design for generating a robust scan design in a system is modeled selectively at a register-transfer level (RTL) or a gate level; the design includes at least a sequential element or a scan cell for mapping to a robust scan cell of a select robust scan cell type. The method comprises performing a scan replacement and a scan stitching on the design database based on a given control information file for synthesizing the robust scan cell on the design database; and generating the synthesized robust scan design at a pre-determined RTL or a pre-determined gate level.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: April 9, 2013
    Assignee: STARDFX Technologies, Inc.
    Inventors: Laung-Terng Wang, Nur A. Touba, Shianling Wu, Ravi Apte
  • Patent number: 8402328
    Abstract: An apparatus and method for soft-error resilience or correction with the ability to perform a manufacturing test operation, a slow-speed snapshot operation, a slow-speed signature analysis operation, an at-speed signature analysis operation, a defect tolerance operation, or any combination of the above operations. In one embodiment, an apparatus includes a system circuit, a shadow circuit, and an output joining circuit for soft-error resilience. The output joining circuit coupled to the output terminals of the system circuit and the shadow circuit includes at least an S-element for defect tolerance. In another embodiment, an apparatus includes a system circuit, a shadow circuit, a debug circuit, and an output joining circuit for soft-error correction. The output joining circuit coupled to the output terminals of the system circuit, the shadow circuit, and the debug circuit includes at least a V-element for defect tolerance.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: March 19, 2013
    Assignee: STARDFX Technologies, Inc.
    Inventors: Laung-Terng Wang, Nur A. Touba, Zhigang Jiang
  • Publication number: 20130036146
    Abstract: A method and apparatus for generating a pseudorandom sequence using a hybrid ring generator with low hardware cost. When a primitive polynomial over GF(2) is selected as the characteristic polynomial f(x) to construct a hybrid ring generator, the circuit implementing f(x) will generate a maximum-length sequence (m-sequence). The hybrid ring generator offers unmatched benefits over existing linear feedback shift register (LFSR) based maximum-length sequence generators (MLSGs). Assume k 2-input XOR gates are required in a standard or modular LFSR design. These benefits include requiring only (k+1)/2 2-input XOR gates, having at most one level of a 2-input XOR gate between any pair of flip-flops, enabling the output of each flip-flop to drive at most 2 fanout nodes, and creating a highly regular structure that makes the new design more layout and timing friendly.
    Type: Application
    Filed: August 1, 2011
    Publication date: February 7, 2013
    Applicant: Syntest Technologies, Inc.
    Inventors: Laung-Terng Wang, Nur A. Touba
  • Patent number: 8335954
    Abstract: A low-pin-count scan compression method and apparatus for reducing test data volume and test application time in a scan-based integrated circuit. The scan-based integrated circuit contains one or more scan chains, each scan chain comprising one or more scan cells coupled in series. The method and apparatus includes a programmable pipelined decompressor comprising one or more shift registers, a combinational logic network, and an optional scan connector. The programmable pipelined decompressor decompresses a compressed scan pattern on its compressed scan inputs and drives the generated decompressed scan pattern at the output of the programmable pipelined decompressor to the scan data inputs of the scan-based integrated circuit. Any input constraints imposed by said_combinational logic network are incorporated into an automatic test pattern generation (ATPG) program for generating the compressed scan pattern for one or more selected faults in one-step.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: December 18, 2012
    Assignee: Syntest Technologies, Inc.
    Inventors: Nur A. Touba, Laung-Terng Wang, Shianling Wu
  • Publication number: 20120266036
    Abstract: A low-pin-count scan compression method and apparatus for reducing test data volume and test application time in a scan-based integrated circuit. The scan-based integrated circuit contains one or more scan chains, each scan chain comprising one or more scan cells coupled in series. The method and apparatus includes a programmable pipelined decompressor comprising one or more shift registers, a combinational logic network, and an optional scan connector. The programmable pipelined decompressor decompresses a compressed scan pattern on its compressed scan inputs and drives the generated decompressed scan pattern at the output of the programmable pipelined decompressor to the scan data inputs of the scan-based integrated circuit. Any input constraints imposed by said_combinational logic network are incorporated into an automatic test pattern generation (ATPG) program for generating the compressed scan pattern for one or more selected faults in one-step.
    Type: Application
    Filed: June 21, 2012
    Publication date: October 18, 2012
    Applicant: Syntest Technologies, Inc.
    Inventors: Nur A. TOUBA, Laung-Terng Wang, Zhigang Jiang, Shianling Wu, Jianping Yan
  • Patent number: 8230282
    Abstract: A low-pin-count scan compression method and apparatus for reducing test data volume and test application time in a scan-based integrated circuit. The scan-based integrated circuit contains one or more scan chains, each scan chain comprising one or more scan cells coupled in series. The method and apparatus includes a programmable pipelined decompressor comprising one or more shift registers, a combinational logic network, and an optional scan connector. The programmable pipelined decompressor decompresses a compressed scan pattern on its compressed scan inputs and drives the generated decompressed scan pattern at the output of the programmable pipelined decompressor to the scan data inputs of the scan-based integrated circuit. Any input constraints imposed by said combinational logic network are incorporated into an automatic test pattern generation (ATPG) program for generating the compressed scan pattern for one or more selected faults in one-step.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: July 24, 2012
    Assignee: Syntest Technologies, Inc.
    Inventors: Nur A. Touba, Laung-Terng Wang, Zhigang Jiang, Shianling Wu, Jianping Yan
  • Publication number: 20120173940
    Abstract: A method for performing robust scan synthesis for soft-error protection on a design for generating a robust scan design in a system is modeled selectively at a register-transfer level (RTL) or a gate level; the design includes at least a sequential element or a scan cell for mapping to a robust scan cell of a select robust scan cell type. The method comprises performing a scan replacement and a scan stitching on the design database based on a given control information file for synthesizing the robust scan cell on the design database; and generating the synthesized robust scan design at a pre-determined RTL or a pre-determined gate level.
    Type: Application
    Filed: March 9, 2012
    Publication date: July 5, 2012
    Applicant: StarDFX Technologies, Inc.
    Inventors: Laung-Terng WANG, Nur A. Touba, Zhigang Jiang, Shianling Wu, Ravi Apte
  • Publication number: 20120110402
    Abstract: A method and apparatus for testing a scan-based 3D integrated circuit (3DIC) using time-division demultiplexing/multiplexing allowing for high-data-rate scan patterns applied at input/output pads converting into low-data-rate scan patterns applied to each embeddded module in the 3DIC. A set of 3D design guidelines is proposed to reduce the number of test times and the number of through-silicon vias (TSVs) required for both pre-bond testing and post-bond testing. The technique allows reuse of scan patterns developed for pre-bond testing of each die (layer) for post-bond testing of the whole 3DIC. It further reduces test application time without concerns for I/O pad count limit and risks for fault coverage loss.
    Type: Application
    Filed: August 31, 2011
    Publication date: May 3, 2012
    Applicant: Syntest Technologies, Inc.
    Inventors: Laung-Terng Wang, Nur Touba, Michael S. Hsiao, Shianling Wu, Zhigang Jiang
  • Patent number: 8161441
    Abstract: A method for performing robust scan synthesis for soft-error protection on a design for generating a robust scan design in a system. The system is modeled selectively at a register-transfer level (RTL) or a gate level; the design includes at least a sequential element or a scan cell for mapping to a robust scan cell of a select robust scan cell type. The method comprises performing a scan replacement and a scan stitching on the design database based on a given control information file for synthesizing the robust scan cell on the design database; and generating the synthesized robust scan design at a pre-determined RTL or a pre-determined gate level.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: April 17, 2012
    Assignee: STARDFX Technologies, Inc.
    Inventors: Laung-Terng Wang, Nur A. Touba, Zhigang Jiang, Shianling Wu, Ravi Apte
  • Publication number: 20110258501
    Abstract: A low-pin-count scan compression method and apparatus for reducing test data volume and test application time in a scan-based integrated circuit. The scan-based integrated circuit contains one or more scan chains, each scan chain comprising one or more scan cells coupled in series. The method and apparatus includes a programmable pipelined decompressor comprising one or more shift registers, a combinational logic network, and an optional scan connector. The programmable pipelined decompressor decompresses a compressed scan pattern on its compressed scan inputs and drives the generated decompressed scan pattern at the output of the programmable pipelined decompressor to the scan data inputs of the scan-based integrated circuit. Any input constraints imposed by said combinational logic network are incorporated into an automatic test pattern generation (ATPG) program for generating the compressed scan pattern for one or more selected faults in one-step.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 20, 2011
    Applicant: Sytest Technologies, Inc.
    Inventors: Nur A. TOUBA, Laung-Terng WANG, Zhigang JIANG, Shianling WU, Jiangping YAN
  • Patent number: 7996741
    Abstract: A low-pin-count scan compression method and apparatus for reducing test data volume and test application time in a scan-based integrated circuit. The scan-based integrated circuit contains one or more scan chains, each scan chain comprising one or more scan cells coupled in series. The method and apparatus includes a programmable pipelined decompressor comprising one or more shift registers, a combinational logic network, and an optional scan connector. The programmable pipelined decompressor decompresses a compressed scan pattern on its compressed scan inputs and drives the generated decompressed scan pattern at the output of the programmable pipelined decompressor to the scan data inputs of the scan-based integrated circuit. Any input constraints imposed by said combinational logic network are incorporated into an automatic test pattern generation (ATPG) program for generating the compressed scan pattern for one or more selected faults in one-step.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: August 9, 2011
    Assignee: Syntest Technologies, Inc.
    Inventors: Nur A. Touba, Laung-Terng Wang, Zhigang Jiang, Shianling Wu, Jianping Yan
  • Patent number: 7945833
    Abstract: A pipelined scan compression method and apparatus for reducing test data volume and test application time in a scan-based integrated circuit without reducing the speed of the scan chain operation in scan-test mode or self-test mode. The scan-based integrated circuit contains one or more scan chains, each scan chain comprising one or more scan cells coupled in series. The method and apparatus includes a decompressor comprising one or more shift registers, a combinational logic network, and an optional scan connector. The decompressor decompresses a compressed scan pattern on its compressed scan inputs and drives the generated decompressed scan pattern at the output of the decompressor to the scan data inputs of the scan-based integrated circuit. Any input constraints imposed by said combinational logic network are incorporated into an automatic test pattern generation (ATPG) program for generating the compressed scan pattern for one or more selected faults in one-step.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: May 17, 2011
    Assignee: Syntest Technologies, Inc.
    Inventors: Laung-Terng (L.-T.) Wang, Nur A. Touba, Boryau (Jack) Sheu, Shianling Wu, Zhigang Jiang
  • Patent number: 7925947
    Abstract: A method and apparatus for compacting test responses containing unknown (X) values in a scan-based integrated circuit using an X-canceling multiple-input signature register (MISR) to produce a known (non-X) signature. The known (non-X) signature is obtained by selectively exclusive-ORing (XORing) together combinations of MISR bits which are linearly dependent in terms of the unknown (X) values using a selective XOR network.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: April 12, 2011
    Assignee: Syntest Technologies, Inc.
    Inventors: Nur A. Touba, Laung-Terng (L.-T.) Wang
  • Publication number: 20110047426
    Abstract: A low-pin-count scan compression method and apparatus for reducing test data volume and test application time in a scan-based integrated circuit. The scan-based integrated circuit contains one or more scan chains, each scan chain comprising one or more scan cells coupled in series. The method and apparatus includes a programmable pipelined decompressor comprising one or more shift registers, a combinational logic network, and an optional scan connector. The programmable pipelined decompressor decompresses a compressed scan pattern on its compressed scan inputs and drives the generated decompressed scan pattern at the output of the programmable pipelined decompressor to the scan data inputs of the scan-based integrated circuit. Any input constraints imposed by said_combinational logic network are incorporated into an automatic test pattern generation (ATPG) program for generating the compressed scan pattern for one or more selected faults in one-step.
    Type: Application
    Filed: August 24, 2009
    Publication date: February 24, 2011
    Inventors: Nur A. TOUBA, Laung-Terng Wang, Zhigang Jiang, Shianling Wu, Jianping Yan
  • Publication number: 20110022909
    Abstract: An apparatus and method for soft-error resilience or correction with the ability to perform a manufacturing test operation, a slow-speed snapshot operation, a slow-speed signature analysis operation, an at-speed signature analysis operation, a defect tolerance operation, or any combination of the above operations. In one embodiment, an apparatus includes a system circuit, a shadow circuit, and an output joining circuit for soft-error resilience. The output joining circuit coupled to the output terminals of the system circuit and the shadow circuit includes at least an S-element for defect tolerance. In another embodiment, an apparatus includes a system circuit, a shadow circuit, a debug circuit, and an output joining circuit for soft-error correction. The output joining circuit coupled to the output terminals of the system circuit, the shadow circuit, and the debug circuit includes at least a V-element for defect tolerance.
    Type: Application
    Filed: July 24, 2009
    Publication date: January 27, 2011
    Inventors: Laung-Terng WANG, Nur A. Touba, Zhigang Jiang
  • Publication number: 20110022908
    Abstract: A method for performing robust scan synthesis for soft-error protection on a design for generating a robust scan design in a system. The system is modeled selectively at a register-transfer level (RTL) or a gate level; the design includes at least a sequential element or a scan cell for mapping to a robust scan cell of a select robust scan cell type. The method comprises performing a scan replacement and a scan stitching on the design database based on a given control information file for synthesizing the robust scan cell on the design database; and generating the synthesized robust scan design at a pre-determined RTL or a pre-determined gate level.
    Type: Application
    Filed: July 24, 2009
    Publication date: January 27, 2011
    Applicant: StarDFX Technologies, Inc.
    Inventors: Laung-Terng WANG, Nur A. Touba, Zhigang Jiang, Shianling Wu, Ravi Apte
  • Patent number: 6061818
    Abstract: A low-overhead scheme for built-in self-test of digital designs incorporating scan allows for complete (100%) fault coverage without modifying the function logic and without degrading system performance (beyond using scan). By altering a pseudo-random bit sequence with bit-fixing logic at an LFSR's serial output, deterministic test cubes that detect random pattern-resistant faults are generated. A procedure for synthesizing the bit-fixing logic allows for complete fault coverage with low hardware overhead. Also, the present approach permits the use of small LFSR's for generating the pseudo-random bit sequence. The faults that are not detected because of linear dependencies in the LFSR can be detected by generating more deterministic cubes at the expense of additional bit-fixing logic.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: May 9, 2000
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nur A. Touba, Edward J. McCluskey