Patents by Inventor Nur Yucer

Nur Yucer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11981918
    Abstract: Induced Pluripotent Stem Cell (Ipsc) technology enables the generation and study of living brain tissue relevant to Parkinson's disease (PD) ex vivo. Utilizing cell lines from PD patients presents a powerful discovery system that links cellular phenotypes observed in vitro with real clinical data. Differentiating patient-derived iPSCs towards a dopaminergic (DA) neural fate revealed that these cells exhibit molecular and functional properties of DA neurons in vitro that are observed to significantly degenerate in the substantia nigra of PD patients. Clinical symptoms that drive the generation of other relevant cell types may also yield novel PD-specific phenotypes in vitro that have the potential to lead to new therapeutic avenues for patients with PD.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: May 14, 2024
    Assignee: Cedars-Sinai Medical Center
    Inventors: Alexander Laperle, Samuel Sances, Nur Yucer, Clive N. Svendsen
  • Patent number: 11414648
    Abstract: The fallopian tube epithelium (FTE) has been recognized as a site of origin of high-grade serous ovarian cancer (HGSC). However, absence of relevant in vitro human models that can recapitulate tissue-specific architecture has hindered understanding of FTE transformation and initiation of HGSC. Here, induced pluripotent stem cells (iPSCs) were used to establish a novel 3-dimensional (3D) human FTE organoid in vitro model containing the relevant cell types of the human fallopian tube as well as a luminal architecture that closely reflects the organization of fallopian tissues in vivo. Modulation of Wnt and nodal/activin signaling pathways provided iPSC differentiation into Müllerian cells and subsequent use of pro-Müllerian growth factors promoted FTE precursors. The expression of Müllerian markers verified correct cellular differentiation. An innovative 3D growth platform, which enabled the FTE organoid to self-organize into a convoluted luminal structure, permitted final differentiation to a FTE lineage.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: August 16, 2022
    Assignee: Cedars-Sinai Medical Center
    Inventors: Clive N. Svendsen, Beth Y. Karlan, Nur Yucer, Marie Holzapfel, Tilly Jenkins Vogel
  • Publication number: 20210130774
    Abstract: Described herein is a microphysiological system for models of disease. Specifically, induced pluripotent stem cells (iPSCs) and iPSC-derived cells, including those obtained from disease patients, are seeded onto microfluidic “chip” devices to study cellular development and disease pathogenesis. Herein, neurodegenerative disease modeling, including Parkinson's Disease (PD) is shown to reproduce key PD pathology in a vascularized human model that contains neurons relating to PD pathology. Such compositions and methods are used for research for PD biomarkers, patient screening for PD risk assessment, and therapeutic discovery and testing. A panel of biomarkers are generated through analysis of living PD-chips by neural activity, whole transcriptomic, proteomic, and metabolomic analysis, and functional enzyme tests of media and tissue.
    Type: Application
    Filed: April 5, 2019
    Publication date: May 6, 2021
    Applicant: Cedars-Sinai Medical Center
    Inventors: Samuel SANCES, Alexander LAPERLE, Nur YUCER, Clive N. SVENDSEN
  • Publication number: 20210033628
    Abstract: Induced Pluripotent Stem Cell (Ipsc) technology enables the generation and study of living brain tissue relevant to Parkinson's disease (PD) ex vivo. Utilizing cell lines from PD patients presents a powerful discovery system that links cellular phenotypes observed in vitro with real clinical data. Differentiating patient-derived iPSCs towards a dopaminergic (DA) neural fate revealed that these cells exhibit molecular and functional properties of DA neurons in vitro that are observed to significantly degenerate in the substantia nigra of PD patients. Clinical symptoms that drive the generation of other relevant cell types may also yield novel PD-specific phenotypes in vitro that have the potential to lead to new therapeutic avenues for patients with PD.
    Type: Application
    Filed: April 5, 2019
    Publication date: February 4, 2021
    Applicant: CEDARS-SINAI MEDICAL CENTER
    Inventors: Alexander Laperle, Samuel Sances, Nur Yucer, Clive N. Svendsen
  • Publication number: 20210023039
    Abstract: Induced Pluripotent Stem Cell (iPSC) technology enables the generation and study of living brain tissue relevant to Parkinson's disease (PD) ex vivo. Utilizing cell lines from PD patients presents a powerful discovery system that links cellular phenotypes observed in vitro with real clinical data. Differentiating patient derived iPSCs towards a dopaminergic (DA) neural fate revealed that these cells exhibit molecular and functional properties of DA neurons in vitro that are observed to significantly degenerate in the substantia nigra of PD patients. Clinical symptoms that drive the generation of other relevant cell types may also yield novel PD specific phenotypes in vitro that have the potential to lead to new therapeutic avenues for patients with PD.
    Type: Application
    Filed: April 5, 2019
    Publication date: January 28, 2021
    Applicant: CEDARS-SINAI MEDICAL CENTER
    Inventors: Alexander Laperle, Samuel Sances, Nur Yucer, Clive N. Svendsen
  • Publication number: 20210024886
    Abstract: Induced Pluripotent Stem Cell (Ipsc) technology enables the generation and study of living brain tissue relevant to Parkinson's disease (PD) ex vivo. Utilizing cell lines from PD patients presents a powerful discovery system that links cellular phenotypes observed in vitro with real clinical data. Differentiating patient-derived iPSCs towards a dopaminergic (DA) neural fate revealed that these cells exhibit molecular and functional properties of DA neurons in vitro that are observed to significantly degenerate in the substantia nigra of PD patients. Clinical symptoms that drive the generation of other relevant cell types may also yield novel PD-specific phenotypes in vitro that have the potential to lead to new therapeutic avenues for patients with PD.
    Type: Application
    Filed: April 5, 2019
    Publication date: January 28, 2021
    Applicant: CEDARS-SINAI MEDICAL CENTER
    Inventors: Alexander Laperle, Samuel Sances, Nur Yucer, Clive N. Svendsen
  • Publication number: 20200032215
    Abstract: The fallopian tube epithelium (FTE) has been recognized as a site of origin of high-grade serous ovarian cancer (HGSC). However, absence of relevant in vitro human models that can recapitulate tissue-specific architecture has hindered understanding of FTE transformation and initiation of HGSC. Here, induced pluripotent stem cells (iPSCs) were used to establish a novel 3-dimensional (3D) human FTE organoid in vitro model containing the relevant cell types of the human fallopian tube as well as a luminal architecture that closely reflects the organization of fallopian tissues in vivo. Modulation of Wnt and nodal/activin signaling pathways provided iPSC differentiation into Müllerian cells and subsequent use of pro-Müllerian growth factors promoted FTE precursors. The expression of Müllerian markers verified correct cellular differentiation. An innovative 3D growth platform, which enabled the FTE organoid to self-organize into a convoluted luminal structure, permitted final differentiation to a FTE lineage.
    Type: Application
    Filed: March 23, 2018
    Publication date: January 30, 2020
    Applicant: CEDARS-SINAI MEDICAL CENTER
    Inventors: Clive N. Svendsen, Beth Y. Karlan, Nur Yucer, Marie Holzapfel, Tilley Jenkins Vogel