Patents by Inventor Oara Neumann

Oara Neumann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230067663
    Abstract: A method includes providing a resonant thermal oscillator in a thermofluidic system having at least two counter-flowing liquid streams separated by at least a spectrum absorbing material, wherein the spectrum absorbing material is hydrophobic, light-absorbing, and photothermal, and adjusting a flow rate in at least one of the counter-flowing liquid streams to maximize heat transfer between the at least two counter-flowing liquid streams.
    Type: Application
    Filed: February 12, 2021
    Publication date: March 2, 2023
    Applicant: William Marsh Rice University
    Inventors: Alessandro Alabastri, Pratiksha Dongare, Nancy J. Halas, Peter J. Nordlander, Oara Neumann
  • Patent number: 11504437
    Abstract: A Magnetic Resonance Imaging (MRI) enhancement agent includes a plurality of particles, each particle including: a metal core; a dielectric shell disposed on the metal core comprising at least one MRI contrast agent; and a metal shell disposed on the exterior surface of the dielectric shell that encapsulates the dielectric shell.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: November 22, 2022
    Assignees: WILLIAM MARSH RICE UNIVERSITY, BAYLOR COLLEGE OF MEDICINE
    Inventors: Nancy J. Halas, Ciceron Ayala-Orozco, Sandra Bishnoi, Luke Henderson, Oara Neumann, Robia Pautler, Peter Nordlander
  • Publication number: 20200164072
    Abstract: A nanosample capable of near-infrared light-triggered release of therapeutic molecules. The nanosample includes a plurality of nanocomplexes. Each of the nanocomplexes includes a nanoshell; a host molecule linked to the nanoshell; and a guest molecule linked to the host molecule. The nanoshell includes a shell. The nanocomplex has a plasmon resonance wavelength. When irradiated with electromagnetic radiation of the plasmon resonance wavelength, plasmon resonance of the nanocomplex releases the guest molecule. The nanoshell may also include a core, where the shell surrounds the core. The nanoshell may be a nanomatryoshka. A link between the nanoshell and the host molecule may be a gold-thiol interaction. The shell may include at least one metal, such as gold or silver. The core may be a liposome and/or silica. The host molecule may be: synthetic polymers, biopolymers, polynucleotides, nucleic acids, polypeptides, polysaccharides, polyterpenes, lipids, aptamers, and/or proteins.
    Type: Application
    Filed: October 7, 2019
    Publication date: May 28, 2020
    Applicant: William Marsh Rice University
    Inventors: Nancy J. Halas, Oara Neumann, Amanda M. Goodman, Sandra W. Bishnoi, Susan E. Clare
  • Publication number: 20180008730
    Abstract: A Magnetic Resonance Imaging (MRI) enhancement agent includes a plurality of particles, each particle including: a metal core; a dielectric shell disposed on the metal core comprising at least one MRI contrast agent; and a metal shell disposed on the exterior surface of the dielectric shell that encapsulates the dielectric shell.
    Type: Application
    Filed: September 15, 2017
    Publication date: January 11, 2018
    Applicant: William Marsh Rice University
    Inventors: Nancy J. Halas, Ciceron Ayala-Orozco, Sandra Bishnoi, Luke Henderson, Oara Neumann, Robia Pautler
  • Patent number: 9863662
    Abstract: A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EM radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 9, 2018
    Assignee: William Marsh Rice University
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann
  • Patent number: 9739473
    Abstract: In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: August 22, 2017
    Assignee: William Marsh Rice University
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann
  • Patent number: 9545458
    Abstract: A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: January 17, 2017
    Assignee: Willam Marsh Rice University
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann
  • Publication number: 20160074544
    Abstract: A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
    Type: Application
    Filed: November 20, 2015
    Publication date: March 17, 2016
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann
  • Publication number: 20160002673
    Abstract: A method of producing bioethanol that includes receiving a feedstock solution that includes polysaccharides in a vessel comprising a complex is described. The complex may be copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and/or branched nanostructures. The method also includes applying electromagnetic (EM) radiation to the complex such that the complex absorbs the EM radiation to generate heat. Using the heat generated by the complex, sugar molecules may be extracted from the polysaccharides in the feedstock solution, and fermented. Then, bioethanol may be extracted from the vessel.
    Type: Application
    Filed: February 18, 2014
    Publication date: January 7, 2016
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann, Alexander Urban
  • Patent number: 9222665
    Abstract: A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: December 29, 2015
    Assignee: William Marsh Rice University
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann
  • Patent number: 9032731
    Abstract: A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 19, 2015
    Assignee: William Marsh Rice University
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann
  • Publication number: 20130334104
    Abstract: A method of distilling a chemical mixture, the method including receiving, in a vessel comprising a complex, the chemical mixture comprising a plurality of fluid elements, applying electromagnetic (EM) radiation to the complex, wherein the complex absorbs the EM radiation to generate heat at a first temperature, transforming, using the heat generated by the complex, a first fluid element of the plurality of fluid elements of the chemical mixture to a first vapor element, and extracting the first vapor element from the vessel, where the complex is at least one selected from a group consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures.
    Type: Application
    Filed: November 30, 2011
    Publication date: December 19, 2013
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann
  • Publication number: 20130306463
    Abstract: In general, the invention relates to a system. The system includes a heating fluid vessel (1604) that includes first fluid and a complex, where the complex receives electromagnetic (EM) radiation (1602), and where the complex absorbs the EM radiation to generate heat and where the heat increases a temperature of the first fluid to generate a first heated fluid (1606). The system further includes a heat exchanger (1608) adapted to receive the first heated fluid (1606) and complex in a first chamber, receive a mixture including a second fluid in a second chamber, and transfer the heat from the first fluid from the complex to the mixture to transform at least a portion of the target fluid of the mixture to a target vapor. The system further includes a condenser (1632) adapted to receive the target vapor, and condense the target vapor to generate target fluid (1636).
    Type: Application
    Filed: November 30, 2011
    Publication date: November 21, 2013
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann
  • Publication number: 20120267893
    Abstract: In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.
    Type: Application
    Filed: December 15, 2010
    Publication date: October 25, 2012
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann
  • Publication number: 20120156102
    Abstract: A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 21, 2012
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann
  • Publication number: 20120153621
    Abstract: A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 21, 2012
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann
  • Publication number: 20120155841
    Abstract: A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EM radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 21, 2012
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: Nancy J. Halas, Peter Nordlander, Oara Neumann