Patents by Inventor Oji Kuno

Oji Kuno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230302578
    Abstract: Provided is a method for manufacturing a board with a roughened surface and a method for manufacturing a board having a plated layer that allow easily manufacturing the board having a plated layer. One of embodiments is a method for manufacturing a board with a surface roughened for wiring formation. The method for manufacturing a board includes performing laser ablation on a board containing a resin at least on a surface of the board. A laser light irradiated in the laser ablation is a laser light having a pulse width of 1 ps or less, a wavelength of 320 nm or more, and an output of 1 W or less.
    Type: Application
    Filed: January 26, 2023
    Publication date: September 28, 2023
    Inventors: Hiroshi YANAGIMOTO, Oji KUNO, Jyunya MURAI, Keiji KURODA, Tomoya OKAZAKI, Rentaro MORI
  • Patent number: 11629302
    Abstract: A fuel production plant includes an electrolysis apparatus; an ethanol generation apparatus that decomposes sugars to generate ethanol and carbon dioxide; and a hydrocarbon generation apparatus that generates hydrocarbons by reacting carbon dioxide with hydrogen. The fuel production plant further includes a hydrogen supply part that supplies hydrogen generated in the electrolysis apparatus to the hydrocarbon generation apparatus by coupling the electrolysis apparatus to the hydrocarbon generation apparatus, an oxygen supply part that supplies oxygen generated in the electrolysis apparatus to the ethanol generation apparatus by coupling the electrolysis apparatus to the ethanol generation apparatus, and a carbon dioxide supply part that supplies carbon dioxide generated in the ethanol generation apparatus to the hydrocarbon generation apparatus by coupling the ethanol generation apparatus to the hydrocarbon generation apparatus.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: April 18, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiji Kaita, Takahiko Hirasawa, Noriko Yasutani, Hideo Kato, Oji Kuno
  • Publication number: 20230034991
    Abstract: A fuel production plant includes an electrolysis apparatus; an ethanol generation apparatus that decomposes sugars to generate ethanol and carbon dioxide; and a hydrocarbon generation apparatus that generates hydrocarbons by reacting carbon dioxide with hydrogen. The fuel production plant further includes a hydrogen supply part that supplies hydrogen generated in the electrolysis apparatus to the hydrocarbon generation apparatus by coupling the electrolysis apparatus to the hydrocarbon generation apparatus, an oxygen supply part that supplies oxygen generated in the electrolysis apparatus to the ethanol generation apparatus by coupling the electrolysis apparatus to the ethanol generation apparatus, and a carbon dioxide supply part that supplies carbon dioxide generated in the ethanol generation apparatus to the hydrocarbon generation apparatus by coupling the ethanol generation apparatus to the hydrocarbon generation apparatus.
    Type: Application
    Filed: June 27, 2022
    Publication date: February 2, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiji KAITA, Takahiko HIRASAWA, Noriko YASUTANI, Hideo KATO, Oji KUNO
  • Patent number: 9586195
    Abstract: A honeycomb structural body is made of cordierite ceramic and composed of partition walls and cells. A cell density is changed continuously or step by step from a central section to an outer peripheral section in a radial direction. The honeycomb structural body has a relationship of M1>M2>M3, and a relationship of K1<K2. M1 is an average cell density of a first section formed from a center to not more than ? R from the center. M2 is an average cell density of a second section formed within a range from ? R to ? R. M3 is an average cell density of a third section formed of more than ? R from the center to an outer peripheral surface. K1 and K2 are average cell density change rates of the first and second sections, respectively. R is a radius of the honeycomb structural body.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: March 7, 2017
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naohiro Hayashi, Masakazu Murata, Oji Kuno, Hiromasa Suzuki, Hiroyuki Matsubara
  • Patent number: 9533294
    Abstract: A honeycomb structural body has plural cell density sections having a cell density which is changed stepwise in a radial direction. A partition wall is formed between adjacent cell density sections. The cell density sections have a high cell density section having a maximum cell density, excepting an outermost cell density section formed at an outermost side, and a low cell density section having a minimum cell density, excepting an innermost cell density section formed at an innermost side. A relationship of V?Va?Vb+Vs is satisfied, where V indicates a volume of the honeycomb structural body if the overall honeycomb structural body is composed of the high cell density section, Va indicates a volume of the high cell density section, Vb indicates a volume of the cell density section, and Vs indicates a volume of the boundary wall which separates the low cell density section from the cell density section formed immediately inside of the low cell density section.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: January 3, 2017
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naohiro Hayashi, Masakazu Murata, Hiroyuki Matsubara, Oji Kuno, Hiromasa Suzuki
  • Patent number: 9388757
    Abstract: The exhaust gas purification apparatus 100 according to the present invention is provided with an exhaust gas purification catalyst 40, an upstream O2 sensor 14, a downstream O2 sensor 15, and a control section 30 that executes main F/B control and sub-F/B control. This exhaust gas purification apparatus 100 contains, on a support in a prescribed region 45 from a catalyst-outlet-side end 43a at the downstream side of an exhaust gas purification catalyst 40, an OSC material having a pyrochlore structure and an OSC material having an oxygen storage rate that is faster than that of the OSC material having a pyrochlore structure.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 12, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Ryota Onoe, Oji Kuno, Yuki Aoki, Nobusuke Kabashima
  • Patent number: 9376327
    Abstract: A ceria-zirconia base composite oxide contains a composite oxide of ceria and zirconia. In the ceria-zirconia base composite oxide, a content ratio between cerium and zirconium in the composite oxide is in a range from 43:57 to 48:52 in terms of molar ratio ([cerium]:[zirconium]). An intensity ratio of a diffraction line at 2?=14.5° to a diffraction line at 2?=29° {I(14/29) value} and an intensity ratio of a diffraction line at 2?=28.5° to the diffraction line at 2?=29° {I(28/29) value}, which are calculated from an X-ray diffraction pattern obtained by an X-ray diffraction measurement using CuKa after heating under a temperature condition of 1100° C. in air for 5 hours, respectively satisfy the following conditions: I(14/29) value?0.015, and I(28/29) value?0.08.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: June 28, 2016
    Assignees: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Akira Morikawa, Kae Yamamura, Akihiko Suda, Naoki Takahashi, Oji Kuno, Takeshi Nobukawa, Akiya Chiba, Ryuta Fujii
  • Patent number: 9156742
    Abstract: In a cross section, perpendicular to an axial direction of a honeycomb structural body having partition walls and cells, a plurality of sections having a different cell density is formed from a central area toward an outer peripheral area, and a partition wall is formed between the sections adjacent to each other. The boundary section has boundary partition walls and plural boundary cells having a polygonal shape different in shape from the cells in the sections formed adjacent to the boundary section. The partition walls in the sections adjacent to the boundary section are connected by the boundary partition walls. A part of the boundary cell is surrounded by at least the boundary partition walls. A relationship of ?1/?2?1.25 is satisfied, where ?1 indicates an average hydraulic diameter of the boundary cells and ?2 indicates an average hydraulic diameter of the cells.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: October 13, 2015
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naohiro Hayashi, Masakazu Murata, Hiroyuki Matsubara, Oji Kuno, Hiromasa Suzuki
  • Publication number: 20150252744
    Abstract: The exhaust gas purification apparatus 100 according to the present invention is provided with an exhaust gas purification catalyst 40, an upstream O2 sensor 14, a downstream O2 sensor 15, and a control section 30 that executes main F/B control and sub-F/B control. This exhaust gas purification apparatus 100 contains, on a support in a prescribed region 45 from a catalyst-outlet-side end 43a at the downstream side of an exhaust gas purification catalyst 40, an OSC material having a pyrochlore structure and an OSC material having an oxygen storage rate that is faster than that of the OSC material having a pyrochlore structure.
    Type: Application
    Filed: December 21, 2012
    Publication date: September 10, 2015
    Inventors: Ryota Onoe, Oji Kuno, Yuki Aoki, Nobusuke Kabashima
  • Patent number: 9018129
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Publication number: 20150047307
    Abstract: A honeycomb structural body Is made of cordierite ceramic, and composed of partition walls and cells. A cell density is changed continuously or step by step from a central section to an outer peripheral section in a radial direction. The honeycomb structural body has a relationship of M1>M2>M3, and a relationship of K1<K2. M1 is an average cell density of a first section formed from a center to not more than ? R from the center M2 is an average cell density of a second section formed within a range from ? R to ? R. M3 is an average cell density of a third section formed of more than ? R from the center to an outer peripheral surface. K1 and K2 are average cell density change rates of the first and second sections, respectively. R is a radius of the honeycomb structural body.
    Type: Application
    Filed: January 17, 2013
    Publication date: February 19, 2015
    Inventors: Naohiro Hayashi, Masakazu Murata, Oji Kuno, Hiromasa Suzuki, Hiroyuki Matsubara
  • Publication number: 20150004353
    Abstract: In a cross section, perpendicular to an axial direction of a honeycomb structural body having partition walls and cells, a plurality of sections having a different cell density is formed from a central area toward an outer peripheral area, and a partition wall is formed between the sections adjacent to each other. The boundary section has boundary partition walls and plural boundary cells having a polygonal shape different in shape from the cells in the sections formed adjacent to the boundary section. The partition walls in the sections adjacent to the boundary section are connected by the boundary partition walls. A part of the boundary cell is surrounded by at least the boundary partition walls. A relationship of ?1/?2?1.25 is satisfied, where ?1 indicates an average hydraulic diameter of the boundary cells and ?2 indicates an average hydraulic diameter of the cells.
    Type: Application
    Filed: January 22, 2013
    Publication date: January 1, 2015
    Applicants: DENSO CORPROATIN, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naohiro Hayashi, Masakazu Murata, Hiroyuki Matsubara, Oji Kuno, Hiromasa Suzuki
  • Publication number: 20150005153
    Abstract: A honeycomb structural body has plural cell density sections having a cell density which is changed stepwise in a radial direction. A partition wall is formed between adjacent cell density sections. The cell density sections have a high cell density section having a maximum cell density, excepting an outermost cell density section formed at an outermost side, and a low cell density section having a minimum cell density, excepting an innermost cell density section formed at an innermost side. A relationship of V?Va?Vb+Vs is satisfied, where V indicates a volume of the honeycomb structural body if the overall honeycomb structural body is composed of the high cell density section, Va indicates a volume of the high cell density section, Vb indicates a volume of the cell density section, and Vs indicates a volume of the boundary wall which separates the low cell density section from the cell density section formed immediately inside of the low cell density section.
    Type: Application
    Filed: January 23, 2013
    Publication date: January 1, 2015
    Applicants: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naohiro Hayashi, Masakazu Murata, Hiroyuki Matsubara, Oji Kuno, Hiromasa Suzuki
  • Patent number: 8852519
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also, disclosed is a production process of an exhaust gas purifying catalyst, by which the above exhaust gas purifying catalyst can be produced. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: October 7, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Publication number: 20140141966
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Application
    Filed: December 12, 2013
    Publication date: May 22, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Patent number: 8697600
    Abstract: An exhaust gas purifying catalyst that contains a first oxygen storage material on which no noble metal is supported and which has a pyrochlore phase type regular array structure, and a second oxygen storage material which has a higher oxygen storage rate and a lower oxygen storage capacity than the first oxygen storage material and on which a platinum group noble metal is supported.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: April 15, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeshi Nobukawa, Oji Kuno, Akira Morikawa, Kae Yamamura, Naoki Takahashi, Akihiko Suda
  • Publication number: 20130029840
    Abstract: A ceria-zirconia base composite oxide contains a composite oxide of ceria and zirconia. In the ceria-zirconia base composite oxide, a content ratio between cerium and zirconium in the composite oxide is in a range from 43:57 to 48:52 in terms of molar ratio ([cerium]: [zirconium]). An intensity ratio of a diffraction line at 2?=14.5° to a diffraction line at 2?=29° {I(14/29) value} and an intensity ratio of a diffraction line at 2?=28.5° to the diffraction line at 2?=29° {I(28/29) value}, which are calculated from an X-ray diffraction pattern obtained by an X-ray diffraction measurement using CuKa after heating under a temperature condition of 1100° C. in air for 5 hours, respectively satisfy the following conditions: I(14/29)value?0.015, and I(28/29)value?0.08.
    Type: Application
    Filed: April 12, 2011
    Publication date: January 31, 2013
    Applicants: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akira Morikawa, Kae Yamamura, Akihiko Suda, Naoki Takahashi, Oji Kuno, Takeshi Nobukawa, Akiya Chiba, Ryuta Fujii
  • Patent number: 8242046
    Abstract: A particulate inorganic oxide containing aluminum oxide, a metal oxide forming no composite oxide with aluminum oxide, and an additional element including at least one of a rare-earth element and an alkali earth element, the inorganic oxide containing a secondary particle formed by aggregating primary particles; wherein at least a part of the secondary particle includes a plurality of first primary particles, each having a particle size of 100 nm or less, containing aluminum oxide and the additional element, and a plurality of second primary particles, each having a particle size of 100 nm or less, containing the metal oxide and the additional element; wherein at least a part of the first and second primary particles has a surface concentrated region where the additional element has a locally increased content in a surface layer part thereof.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: August 14, 2012
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Chuo
    Inventors: Akira Morikawa, Toshitaka Tanabe, Kae Yamamura, Naoki Takahashi, Hiromasa Suzuki, Akemi Sato, Mamoru Ishikiriyama, Takaaki Kanazawa, Oji Kuno
  • Patent number: RE44802
    Abstract: A cerium-zirconium composite metal oxide having improved durability at high temperature and a stable oxygen storage capacity is provided. The cerium-zirconium composite metal oxide is characterized in that the total mole number of Ce and Zr is at least 85% based on the total mole number of metal in the composite metal oxide, a molar ratio Ce/Zr is within a range from 1/9 to 9/1, and an isoelectric point of the composite metal oxide is more than 3.5. Preferably, the molar ratio Ce/Zr is within a range from 3/7 to 7/3 and the isoelectric point is within a range from 3.8 to 5.0, and the cerium-zirconium composite metal oxide contains a rare earth metal (excluding Ce) in a concentration of less than 15% by mole based on the total mole number of metal in the composite metal oxide. Also the present invention provides a cerium-zirconium composite metal oxide, characterized in that CeO2 forms a core surrounded by ZrO2.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: March 11, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Oji Kuno
  • Patent number: RE45083
    Abstract: The present invention relates to metal oxide particles having cores comprising larger molar amounts of zirconia than of ceria, and surface layers comprising larger molar amounts of ceria than of zirconia. Further, the present invention relates to a method for preparing the particles. The method comprises preparing a solution comprising zirconia sol and ceria sol, adjusting the pH of the solution within ±0.5 on the basis of the isoelectric point of zirconia, and aggregating zirconia and then aggregating ceria around the aggregated zirconia from the solution to make aggregates. Furthermore, the present invention relates to an exhaust gas purifying catalyst comprising the metal oxide particles, and a noble metal carried by the metal oxide particles.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: August 19, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Oji Kuno