Patents by Inventor Ola ROLANDSON

Ola ROLANDSON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11920505
    Abstract: A heat exchange module including a corrugated top heat exchange substrate and a corrugated bottom heat exchange substrate, and tubes that extend in a width direction (W) between the top and bottom substrates in heat exchanging contact with ridges of the substrates. A top and a bottom casing member contacts the substrates and each has a transverse side wall with slits oriented in the transverse direction (T) and accommodating the tubes. The side walls of the top and bottom casing members overlap and are mutually connected by soldering or brazing.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: March 5, 2024
    Assignee: Volvo Car Corporation
    Inventor: Ola Rolandson
  • Patent number: 11815038
    Abstract: An internal combustion engine assembly comprises: a fuel tank for containing fuel comprising alcohol, a reformer unit being in heat exchanging contact with exhaust gases from an exhaust system, for steam reforming of alcohol, a water supply unit connected to a water steam inlet of the reformer unit, and a distiller unit being with a fuel inlet connected to a distiller supply duct that is connected to the fuel tank, an alcohol outlet of the distiller unit being connected to the inlet of the reformer unit. The increased alcohol concentrations at the inlet of the steam reformer result in improved efficiency of the reforming process.
    Type: Grant
    Filed: February 15, 2023
    Date of Patent: November 14, 2023
    Assignee: Volvo Car Corporation
    Inventors: Ola Rolandson, Joshua Dudley
  • Publication number: 20230321627
    Abstract: A heat exchange module including a corrugated top heat exchange substrate and a corrugated bottom heat exchange substrate, and tubes that extend in a width direction (W) between the top and bottom substrates in heat exchanging contact with ridges of the substrates. A top and a bottom casing member contacts the substrates and each has a transverse side wall with slits oriented in the transverse direction (T) and accommodating the tubes. The side walls of the top and bottom casing members overlap and are mutually connected by soldering or brazing.
    Type: Application
    Filed: March 30, 2023
    Publication date: October 12, 2023
    Inventor: Ola Rolandson
  • Patent number: 11781560
    Abstract: A turbo compressor assembly, a vehicle including such a turbo compressor assembly, and a method for manufacturing such a turbo compressor assembly. The turbo compressor assembly includes an air intake channel, a compressor wheel, an insert unit and an actuator unit. The air intake channel is configured to draw air to the compressor wheel and the compressor wheel is configured to rotate for compressing the drawn air from the intake channel. The insert unit is arranged between the air intake channel and the compressor wheel and configured to control an airflow to the compressor wheel. The actuator unit is connected to the insert unit and configured to move the insert unit at least partially along the air intake channel.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: October 10, 2023
    Assignee: Volvo Car Corporation
    Inventor: Ola Rolandson
  • Publication number: 20230313759
    Abstract: An internal combustion engine assembly includes a fuel tank, connected via a fuel supply duct to a first fuel inlet of a cylinder, the cylinders with an outlet connected to an exhaust system. Exhaust gases from the exhaust system are in heat exchanging contact with a reformer unit for steam reforming of alcohol, the reformer unit being with a reformer outlet connected to a to a second fuel inlet of the cylinders for supplying hydrogen to the second fuel inlet. An alcohol evaporator is in heat exchanging contact with the exhaust gases. A water evaporator is in heat exchanging contact with the exhaust gases. A reformer purge duct extends from the exhaust system to the inlet of the reformer unit via a purge control valve, adapted for feeding exhaust gases into the reformer unit and via the reformer outlet to the second fuel inlet of the cylinders.
    Type: Application
    Filed: March 30, 2023
    Publication date: October 5, 2023
    Inventor: Ola Rolandson
  • Patent number: 11767784
    Abstract: An expander system for recovering waste heat, a waste heat recovery system including such an expander system, a vehicle including such a waste heat recovery system and a method for manufacturing such an expander system. The expander system includes a shaft and a coupling portion including a first sealing unit and a second sealing unit. The shaft is inserted through the coupling portion to an expanding unit. The first sealing unit and the second sealing unit are arranged facing one another along the shaft. The first sealing unit and the second sealing unit are configured to seal the shaft in an axial direction relative to the shaft.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: September 26, 2023
    Assignee: Volvo Car Corporation
    Inventor: Ola Rolandson
  • Publication number: 20230265803
    Abstract: An internal combustion engine assembly comprises: a fuel tank for containing fuel comprising alcohol, a reformer unit being in heat exchanging contact with exhaust gases from an exhaust system, for steam reforming of alcohol, a water supply unit connected to a water steam inlet of the reformer unit, and a distiller unit being with a fuel inlet connected to a distiller supply duct that is connected to the fuel tank, an alcohol outlet of the distiller unit being connected to the inlet of the reformer unit. The increased alcohol concentrations at the inlet of the steam reformer result in improved efficiency of the reforming process.
    Type: Application
    Filed: February 15, 2023
    Publication date: August 24, 2023
    Inventors: Ola Rolandson, Joshua Dudley
  • Patent number: 11719199
    Abstract: An internal combustion engine assembly is provided with a fuel tank for fuel including ethanol, and a reformer for steam reforming of ethanol that is with an outlet connected to a buffer tank. A first reformer supply duct extends from the fuel tank to the reformer via a fuel evaporator that is in heat exchanging contact with the exhaust gases, for supplying ethanol vapor to the reformer. A second reformer supply duct extends from a water reservoir to the reformer via a water evaporator that is in heat exchanging contact with the exhaust gases. The reformer is in heat exchanging contact with the catalytic converter and is adapted for reforming ethanol and water into syngas including carbon monoxide and hydrogen, and for supplying the syngas via the outlet to the buffer tank. The reformer and the catalytic converter may form an integrated unit.
    Type: Grant
    Filed: November 11, 2022
    Date of Patent: August 8, 2023
    Assignee: Volvo Car Corporation
    Inventor: Ola Rolandson
  • Publication number: 20230167789
    Abstract: An internal combustion engine assembly is provided with a fuel tank for fuel including ethanol, and a reformer for steam reforming of ethanol that is with an outlet connected to a buffer tank. A first reformer supply duct extends from the fuel tank to the reformer via a fuel evaporator that is in heat exchanging contact with the exhaust gases, for supplying ethanol vapor to the reformer. A second reformer supply duct extends from a water reservoir to the reformer via a water evaporator that is in heat exchanging contact with the exhaust gases. The reformer is in heat exchanging contact with the catalytic converter and is adapted for reforming ethanol and water into syngas including carbon monoxide and hydrogen, and for supplying the syngas via the outlet to the buffer tank. The reformer and the catalytic converter may form an integrated unit.
    Type: Application
    Filed: November 11, 2022
    Publication date: June 1, 2023
    Inventor: Ola Rolandson
  • Publication number: 20220397054
    Abstract: A turbo compressor assembly, a vehicle including such a turbo compressor assembly, and a method for manufacturing such a turbo compressor assembly. The turbo compressor assembly includes an air intake channel, a compressor wheel, an insert unit and an actuator unit. The air intake channel is configured to draw air to the compressor wheel and the compressor wheel is configured to rotate for compressing the drawn air from the intake channel. The insert unit is arranged between the air intake channel and the compressor wheel and configured to control an airflow to the compressor wheel. The actuator unit is connected to the insert unit and configured to move the insert unit at least partially along the air intake channel.
    Type: Application
    Filed: June 10, 2022
    Publication date: December 15, 2022
    Inventor: Ola Rolandson
  • Publication number: 20220213828
    Abstract: An expander system for recovering waste heat, a waste heat recovery system including such an expander system, a vehicle including such a waste heat recovery system and a method for manufacturing such an expander system. The expander system includes a shaft and a coupling portion including a first sealing unit and a second sealing unit. The shaft is inserted through the coupling portion to an expanding unit. The first sealing unit and the second sealing unit are arranged facing one another along the shaft. The first sealing unit and the second sealing unit are configured to seal the shaft in an axial direction relative to the shaft.
    Type: Application
    Filed: December 23, 2021
    Publication date: July 7, 2022
    Inventor: Ola Rolandson
  • Patent number: 11333107
    Abstract: The exhaust gas recirculation (EGR) system provided herein utilizes a crossover (X) valve that is selectively activated at the direction of the electronic control module (ECM) to mix the high temperature (HT) and low temperature (LT) circuits of the EGR system under certain predetermined operating conditions. Thus, HT circuit fluid (at engine temperatures) is selectively fed into the LT circuit fluid (at ambient temperatures) to heat certain LT circuit components that are normally cooled by the LT circuit before starting the low pressure (LP) EGR in certain cold cycles. When this heating is finished, the X valve is closed to provide normal HT circuit/LT circuit fluid separation. The X valve can be controlled using a rotational actuator or the like. To avoid exposing the LT circuit to the high revolution-per-minute (RPM) operating conditions of the HT circuit, a HT bypass mechanism is provided.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: May 17, 2022
    Assignee: Volvo Car Corporation
    Inventor: Ola Rolandson
  • Patent number: 11236768
    Abstract: An exhaust gas recirculation (EGR) system that utilizes an insulated separation wall that separates the hot, humid EGR gas duct from the cool, dry inlet air duct in the upstream proximity of the compressor inlet of the associated turbocharger compressor. This insulated separation wall inhibits the condensation of water droplets and the formation of ice particles near the mixing point of the EGR gases and inlet air in the upstream proximity of the compressor inlet, such that the turbocharger compressor wheel, blades, and other components are not subsequently damaged by the condensed water droplets or formed ice particles. The added insulation in this cold sink area essentially thermally isolates the hot, humid EGR gas flow from the cool, dry inlet air flow until the actual mixing point of the flows.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: February 1, 2022
    Assignee: Volvo Car Corporation
    Inventor: Ola Rolandson
  • Patent number: 10914266
    Abstract: A compact two-stage evaporator waste heat recovery (WHR) device (7) is disclosed, and a system using the device. The device recovers energy from waste heat passing through the device and transfers that energy to a Rankine Cycle working fluid also passing through the device. The device includes a first and second evaporator (15); and, a state separator (17) connected between the outlet of the first evaporator and the inlet of the second evaporator. The state separator (17) separates the working fluid into liquid and vapor. The liquid is re-cycled to the inlet of the first evaporator (15); the vapor is sent to the inlet of the second evaporator (19) for superheating. An overall WHR system using the device further includes an expander (21), condenser (23), and pump (25). The system further includes control circuitry (26) for controlling operation of the waste heat recovery device (7) itself and the WHR system.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: February 9, 2021
    Assignee: VOLVO CAR CORPORATION
    Inventor: Ola Rolandson
  • Publication number: 20200400105
    Abstract: The exhaust gas recirculation (EGR) system provided herein utilizes a crossover (X) valve that is selectively activated at the direction of the electronic control module (ECM) to mix the high temperature (HT) and low temperature (LT) circuits of the EGR system under certain predetermined operating conditions. Thus, HT circuit fluid (at engine temperatures) is selectively fed into the LT circuit fluid (at ambient temperatures) to heat certain LT circuit components that are normally cooled by the LT circuit before starting the low pressure (LP) EGR in certain cold cycles. When this heating is finished, the X valve is closed to provide normal HT circuit/LT circuit fluid separation. The X valve can be controlled using a rotational actuator or the like. To avoid exposing the LT circuit to the high revolution-per-minute (RPM) operating conditions of the HT circuit, a HT bypass mechanism is provided.
    Type: Application
    Filed: September 4, 2020
    Publication date: December 24, 2020
    Inventor: Ola ROLANDSON
  • Publication number: 20200400161
    Abstract: An exhaust gas recirculation (EGR) system that utilizes an insulated separation wall that separates the hot, humid EGR gas duct from the cool, dry inlet air duct in the upstream proximity of the compressor inlet of the associated turbocharger compressor. This insulated separation wall inhibits the condensation of water droplets and the formation of ice particles near the mixing point of the EGR gases and inlet air in the upstream proximity of the compressor inlet, such that the turbocharger compressor wheel, blades, and other components are not subsequently damaged by the condensed water droplets or formed ice particles. The added insulation in this cold sink area essentially thermally isolates the hot, humid EGR gas flow from the cool, dry inlet air flow until the actual mixing point of the flows.
    Type: Application
    Filed: September 4, 2020
    Publication date: December 24, 2020
    Inventor: Ola ROLANDSON
  • Patent number: 10767601
    Abstract: The exhaust gas recirculation (EGR) system provided herein utilizes a crossover (X) valve that is selectively activated at the direction of the electronic control module (ECM) to mix the high temperature (HT) and low temperature (LT) circuits of the EGR system under certain predetermined operating conditions. Thus, HT circuit fluid (at engine temperatures) is selectively fed into the LT circuit fluid (at ambient temperatures) to heat certain LT circuit components that are normally cooled by the LT circuit before starting the low pressure (LP) EGR in certain cold cycles. When this heating is finished, the X valve is closed to provide normal HT circuit/LT circuit fluid separation. The X valve can be controlled using a rotational actuator or the like. To avoid exposing the LT circuit to the high revolution-per-minute (RPM) operating conditions of the HT circuit, a HT bypass mechanism is provided.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: September 8, 2020
    Assignee: Volvo Car Corporation
    Inventor: Ola Rolandson
  • Patent number: 10767659
    Abstract: An exhaust gas recirculation (EGR) system that utilizes an insulated separation wall that separates the hot, humid EGR gas duct from the cool, dry inlet air duct in the upstream proximity of the compressor inlet of the associated turbocharger compressor. This insulated separation wall inhibits the condensation of water droplets and the formation of ice particles near the mixing point of the EGR gases and inlet air in the upstream proximity of the compressor inlet, such that the turbocharger compressor wheel, blades, and other components are not subsequently damaged by the condensed water droplets or formed ice particles. The added insulation in this cold sink area essentially thermally isolates the hot, humid EGR gas flow from the cool, dry inlet air flow until the actual mixing point of the flows.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: September 8, 2020
    Assignee: Volvo Car Corporation
    Inventor: Ola Rolandson
  • Publication number: 20200232423
    Abstract: The exhaust gas recirculation (EGR) system provided herein utilizes a crossover (X) valve that is selectively activated at the direction of the electronic control module (ECM) to mix the high temperature (HT) and low temperature (LT) circuits of the EGR system under certain predetermined operating conditions. Thus, HT circuit fluid (at engine temperatures) is selectively fed into the LT circuit fluid (at ambient temperatures) to heat certain LT circuit components that are normally cooled by the LT circuit before starting the low pressure (LP) EGR in certain cold cycles. When this heating is finished, the X valve is closed to provide normal HT circuit/LT circuit fluid separation. The X valve can be controlled using a rotational actuator or the like. To avoid exposing the LT circuit to the high revolution-per-minute (RPM) operating conditions of the HT circuit, a HT bypass mechanism is provided.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 23, 2020
    Inventor: Ola ROLANDSON
  • Publication number: 20200191165
    Abstract: An exhaust gas recirculation (EGR) system that utilizes an insulated separation wall that separates the hot, humid EGR gas duct from the cool, dry inlet air duct in the upstream proximity of the compressor inlet of the associated turbocharger compressor. This insulated separation wall inhibits the condensation of water droplets and the formation of ice particles near the mixing point of the EGR gases and inlet air in the upstream proximity of the compressor inlet, such that the turbocharger compressor wheel, blades, and other components are not subsequently damaged by the condensed water droplets or formed ice particles. The added insulation in this cold sink area essentially thermally isolates the hot, humid EGR gas flow from the cool, dry inlet air flow until the actual mixing point of the flows.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 18, 2020
    Inventor: Ola ROLANDSON