Patents by Inventor Olaf Kriha
Olaf Kriha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230150938Abstract: The present invention relates to a solution comprising water and different 2,2,6,6-tetramethyl-piperidinyl-oxyl (TEMPO)-derivatives, a process for the production of this solution, a process for making a redox-flow cell comprising the solution as electrolyte, the redox-flow cell comprising the solution as an electrolyte in one chamber of the cell and the use of the redox-flow cell for storing electrical energy.Type: ApplicationFiled: March 22, 2021Publication date: May 18, 2023Inventors: Rainer KLOPSCH, Peter OECHSLE, Harald WINSEL, Alexander Michael HAYDL, Joaquim Henrique TELES, Johann-Peter MELDER, Jan-Dirk ARNDT, Olaf KRIHA, Alexandre GUTHERTZ
-
Publication number: 20230150939Abstract: The present invention relates to a solution comprising water and different 2,2,6,6-tetramethyl-piperidinyl-oxyl (TEMPO)-derivatives, a process for the production of this solution, a process for making a redox-flow cell comprising the solution as electrolyte, a redox-flow cell comprising the solution as an electrolyte in one chamber of the cell and the use of the redox-flow cell for storing electrical energy.Type: ApplicationFiled: March 22, 2021Publication date: May 18, 2023Inventors: Alexander Michael HAYDL, Peter OECHSLE, Harald WINSEL, Jan-Dirk ARNDT, Joaquim Henrique TELES, Johann-Peter MELDER, Olaf KRIHA, Rainer KLOPSCH
-
Publication number: 20190321774Abstract: A method for depleting aromatic hydrocarbon from a crude gas stream, comprising the use of an absorption medium comprising one or more compounds of the general formula (I): wherein R1a and R1b are each independently C7 to C12-alkyl and/or one or more compounds of the general formula (II): wherein R2a and R2b are each independently C7 to C12-alkyl.Type: ApplicationFiled: November 13, 2017Publication date: October 24, 2019Inventors: Boris BREITSCHEIDEL, Tim WELLHAUSEN, Friedemann GAITZSCH, Peter SCHUNCK, Olaf KRIHA, Stefan STAUB
-
Patent number: 9427900Abstract: The present invention relates to a composite component comprising an unfoamed polymer phase and a foamed phase, and to a process for producing the same.Type: GrantFiled: November 9, 2011Date of Patent: August 30, 2016Assignee: BASF SEInventors: Philippe Desbois, Olaf Kriha, Bangaru Sampath, Holger Ruckdäschel, Dietrich Scherzer, Freddy Gruber, Klaus Hahn
-
Patent number: 9249270Abstract: An expandable pelletized material comprising A) a polymer matrix composed of A1) at least 55% by weight of polyester (based on the entirety of components A1) and A2)) with a total enthalpy of fusion of up to 60 J/g, optionally of one or more melting points in the range from 100 to 300° C. and of one or more glass transition temperatures in the range from 0 to 250° C., and A2) from 0 to 45% by weight (based on the entirety of components A1) and A2)) of one or more thermoplastic polymers different from component A1); B) a physical blowing agent component, and C) optionally further additives is suitable for producing moldable foams for use in the automobile industry, airline industry, construction industry, packaging industry, sports and leisure industry, in transport, in engineering, in lightweight construction, and/or in composite construction.Type: GrantFiled: August 15, 2011Date of Patent: February 2, 2016Assignee: BASF SEInventors: Bangaru Dharmapuri Sriramulu Sampath, Olaf Kriha, Holger Ruckdäschel, Philippe Desbois, Freddy Gruber, Klaus Hahn
-
Patent number: 9234137Abstract: Use of a phosphorus compound of the formula (I) as flame retardant, where the definitions of the symbols in the formula (I) are as follows: A is one of the following groups: Y is —P(?X2)SR3R4, H, a straight-chain or branched C1-C12-alkyl group, C5-C6-cycloalkyl, C6-C12-aryl, or benzyl, where the four last-mentioned groups are unsubstituted or have substitution by one or more radicals from the group of C1-C4-alkyl or C1-C4-alkenyl; R1, R2, R3, and R4 are identical or different and are hydrogen, OH, C1-C16-alkyl, C1-C16-alkenyl, C1-C16-alkoxy, C1-C16-alkenoxy, C3-C10-cycloalkyl, C3-C10-cycloalkoxy, C6-C10-aryl, C6-C10-aryloxy, C6-C10-aryl-C1-C16-alkyl, C6-C10-aryl-C1-C16-alkoxy, SR9 COR10, COOR11, CONR12R13 or two radicals R1, R2, R3, or R4 form, together with the phosphorus atom to which they are bonded, or the P—O-A-O—P group, a ring system; R5, R6, R7, and R8 are identical or different and are H, C1-C16-alkyl, C1-C16-alkenyl, C1-C16-alkoxy, C1-C16-alkenoxy; R9, R10, R11, R12, R13 are identical orType: GrantFiled: December 15, 2010Date of Patent: January 12, 2016Assignee: BASF SEInventors: Christoph Fleckenstein, Hartmut Denecke, Ingo Bellin, Olaf Kriha, Patrick Spies, Sabine Fuchs, Klemens Massonne, Klaus Hahn, Peter Deglmann, Maximilian Hofmann, Alois Kindler
-
Patent number: 8920923Abstract: A process for the production of a lignocellulose-containing material, in which, based in each case on the lignocellulose-containing material: A) from 30 to 95% by weight of lignocellulose particles; B) from 1 to 25% by weight of expanded plastic particles having a bulk density in the range from 10 to 150 kg/m3; C) from 1 to 50% by weight of a binder selected from the group consisting of aminoplast resin, phenol-formaldehyde resin and organic isocyanate having at least two isocyanate groups, and optionally D) additives are mixed and are then pressed at elevated temperature and under elevated pressure, wherein the component B) comprises a curing agent for the component C).Type: GrantFiled: March 2, 2011Date of Patent: December 30, 2014Assignee: BASF SEInventors: Maxim Peretolchin, Günter Scherr, Stephan Weinkötz, Frank Braun, Olaf Kriha, Benjamin Nehls, Michael Schmidt, Michael Finkenauer, Jürgen von Auenmüller
-
Patent number: 8889748Abstract: A composition comprising at least one expandable styrene polymer component and at least one cyclohexanecarboxylic ester and also optionally further components can be processed to mechanically robust foam materials.Type: GrantFiled: June 1, 2011Date of Patent: November 18, 2014Assignee: BASF SEInventors: Wolfram Husemann, Uwe-Johannes Lehnen, Patrick Spies, Boris Breitscheidel, Klaus Hahn, Jan Holoch, Olaf Kriha, Bernhard Schmied, Pascal Hesse
-
Patent number: 8691896Abstract: Disclosed is a polymer foam with density in the range from 5 to 120 kg/m3 composed of a polymer component including at least one styrene polymer and from 0.1 to 5 parts by weight of a flame retardant mixture including at least one phosphorus compound of the formula PR1R2R3. A process for producing the polymer is also disclosed.Type: GrantFiled: February 7, 2011Date of Patent: April 8, 2014Assignee: BASF SEInventors: Klaus Hahn, Olaf Kriha, Ingo Bellin, Patrick Spies, Sabine Fuchs, Peter Deglmann, Klemens Massonne, Hartmut Denecke, Christoph Fleckenstein, Geert Janssens, Maximilian Hofmann, Manfred Döring, Ciesielski Michael, Jochen Wagner
-
Patent number: 8623501Abstract: A process for the production of a lignocellulose-containing material, in which, based in each case on the lignocellulose-containing material: A) from 30 to 95% by weight of lignocellulose particles; B) from 1 to 25% by weight of expanded plastic particles having a bulk density in the range from 10 to 150 kg/m3; C) from 1 to 50% by weight of a binder selected from the group consisting of aminoplast resin, phenol-formaldehyde resin and organic isocyanate having at least two isocyanate groups, and optionally D) additives are mixed and are then pressed at elevated temperature and under elevated pressure, wherein the component B) comprises a formaldehyde scavenger.Type: GrantFiled: March 2, 2011Date of Patent: January 7, 2014Assignee: BASF SEInventors: Maxim Peretolchin, Günter Scherr, Stephan Weinkötz, Frank Braun, Olaf Kriha, Benjamin Nehls, Michael Schmidt, Michael Finkenauer, Jürgen von Auenmüller
-
Patent number: 8455559Abstract: The invention provides a process for preparing expandable styrene polymers which comprises the steps of: (a) adding an aqueous phase comprising a suspension stabilizer and an organic phase comprising styrene and an initiator to a reactor, (b) commencing the addition of a blowing agent at a styrene conversion in the range from 40 to 70% and adding the blowing agent over a period ranging from 30 to 60 minutes, (c) adding a stabilizer to stabilize the bead size distribution of the expandable styrene polymer at a styrene conversion in the range from 65 to 99%.Type: GrantFiled: March 11, 2011Date of Patent: June 4, 2013Assignee: BASF SEInventors: Wolfgang Ferstl, Jun Gao, Klaus Hahn, Pascal Hesse, Jan Holoch, Klaus-Dieter Hungenberg, Wolfram Husemann, Renata Jovanovic, Wolfgang Kasten, Olaf Kriha, Eckhard Neufeld, Michel Pepers, Birgit Reinhard, Bernhard Schmied, Rudolf Süttinger, Ping Zhang
-
Publication number: 20120252911Abstract: Use of a phosphorus compound of the formula (I) as flame retardant, where the definitions of the symbols in the formula (I) are as follows: A is one of the following groups: Y is —P(?X2)SR3R4, H, a straight-chain or branched C1-C12-alkyl group, C5-C6-cycloalkyl, C6-C12-aryl, or benzyl, where the four last-mentioned groups are unsubstituted or have substitution by one or more radicals from the group of C1-C4-alkyl or C1-C4-alkenyl; R1, R2, R3, and R4 are identical or different and are hydrogen, OH, C1-C16-alkyl, C1-C16-alkenyl, C1-C16-alkoxy, C1-C16-alkenoxy, C3-C10-cycloalkyl, C3-C10-cycloalkoxy, C6-C10-aryl, C6-C10-aryloxy, C6-C10-aryl-C1-C16-alkyl, C6-C10-aryl-C1-C16-alkoxy, SR9 COR10, COOR11, CONR12R13 or two radicals R1, R2, R3, or R4 form, together with the phosphorus atom to which they are bonded, or the P—O-A-O—P group, a ring system; R5, R6, R7, and R8 are identical or different and are H, C1-C16-alkyl, C1-C16-alkenyl, C1-C16-alkoxy, C1-C16-alkenoxy; R9, R10, R11, R12, R13 are identical orType: ApplicationFiled: December 15, 2010Publication date: October 4, 2012Applicant: BASF SEInventors: Christoph Fleckenstein, Hartmut Denecke, Ingo Bellin, Olaf Kriha, Patrick Spies, Sabine Fuchs, Klemens Massonne, Klaus Hahn, Peter Deglmann, Maximilian Hofmann, Alois Kindler
-
Publication number: 20120252914Abstract: Flame-retardant polymer foams which comprise, as flame retardant, at least one halogenated polymer, for example brominated polystyrene or styrene-butadiene block copolymer having bromine content in the range from 40 to 80% by weight, or tetrabromobisphenol A compounds (TBBPA), processes for producing these, and also flame-retardant expandable styrene polymers.Type: ApplicationFiled: December 13, 2010Publication date: October 4, 2012Applicant: BASF SEInventors: Klaus Hahn, Olaf Kriha, Ingo Bellin, Frank Braun, Patrick Spies, Jan Kurt Walter Sandler, Geert Janssens, Jürgen Fischer, Christoph Fleckenstein, Hartmut Denecke, Sabine Fuchs, Peter Merkel, Manfred Pawlowski, Holger Ruckdäschel, Klemens Massonne
-
Publication number: 20120178842Abstract: Halogen-free, flame-retardant polymer foams which comprise, as flame retardant, at least one cyclic or acyclic oligophosphorus compound, and processes for their production. Examples of suitable oligophosphorus compounds are those having the structure Ia, Ib, or Ic: Another group of suitable oligophosphorus compounds is that having one of the following structures IIa, IIb, or IIc: Cyclic oligophosphorus compounds of the following structure III are also suitable: The radicals R1-R5 have been selected independently of one another from the group of C1-C16-alkyl, C1-C16-alkenyl, C1-C16-alkoxy, C1-C16-alkenyloxy, C3-C10-cycloalkyl, C3-C10-cycloalkoxy, C6-C10-aryl, C6-C10-aryloxy, C6-C10-aryl-C1-C16-alkyl, C6-C10-aryl-C1-C16-alkoxy, NR2R3, COR2, COOR2, and CONR2R3 , and the radicals X1 and X2, independently of one another, are O or S.Type: ApplicationFiled: September 10, 2010Publication date: July 12, 2012Applicant: BASF SEInventors: Klaus Hahn, Olaf Kriha, Ingo Bellin, Patrick Spies, Sabine Fuchs, Peter Deglmann, Klemens Massonne, Hartmut Denecke, Christoph Fleckenstein, Geert Janssens
-
Publication number: 20120141772Abstract: A process for the production of a light lignocellulose-containing substance having an average density in the range from 200 to 600 kg/m3, in which, in each case based on the lignocellulose-containing substance: A) from 30 to 95% by weight of lignocellulose particles; B) from 1 to 25% by weight of expanded plastics particles having a bulk density in the range from 10 to 100 kg/m3; C) from 3 to 50% by weight of a binder selected from the group consisting of aminoplast resin, phenol-formaldehyde resin and organic isocyanate having at least two isocyanate groups and, if appropriate D) additives are mixed and then pressed at elevated temperature and under elevated pressure, wherein the expanded plastics particles are obtained from expandable plastics particles with a content of blowing agent in the range from 0.01 to 4% by weight, based on the expandable plastics particles.Type: ApplicationFiled: August 2, 2010Publication date: June 7, 2012Applicant: BASE SEInventors: Frank Braun, Olaf Kriha, Klaus Hahn, Benjamin Nehls, Maxim Paretolchen, Stephan Weinkötz
-
Publication number: 20120119402Abstract: The present invention relates to a composite component comprising an unfoamed polymer phase and a foamed phase, and to a process for producing the same.Type: ApplicationFiled: November 9, 2011Publication date: May 17, 2012Applicant: BASF SEInventors: Philippe DESBOIS, Olaf Kriha, Bangaru Sampath, Holger Ruckdäschel, Dietrich Scherzer, Freddy Gruber, Klaus Hahn
-
Publication number: 20120041086Abstract: An expandable pelletized material comprising A) a polymer matrix composed of A1) at least 55% by weight of polyester (based on the entirety of components A1) and A2)) with a total enthalpy of fusion of up to 60 J/g, optionally of one or more melting points in the range from 100 to 300° C. and of one or more glass transition temperatures in the range from 0 to 250° C., and A2) from 0 to 45% by weight (based on the entirety of components A1) and A2)) of one or more thermoplastic polymers different from component A1); B) a physical blowing agent component, and C) optionally further additives is suitable for producing moldable foams for use in the automobile industry, airline industry, construction industry, packaging industry, sports and leisure industry, in transport, in engineering, in lightweight construction, and/or in composite construction.Type: ApplicationFiled: August 15, 2011Publication date: February 16, 2012Applicant: BASF SEInventors: Bangaru Dharmapuri Sriramulu Sampath, Olaf Kriha, Holger Ruckdäschel, Philippe Desbois, Freddy Gruber, Klaus Hahn
-
Publication number: 20110294910Abstract: An expandable pelletized material comprising A) a polymer matrix composed of A1) at least 55% by weight of polyamide (based on the entirety of components A1) and A2)) with a crystallinity of up to 30% and if appropriate a melting point in the range from 100 to 340° C. and a glass transition temperature in the range from 0 to 150° C., and A2) from 0 to 45% by weight of one or more thermoplastic polymers that differ from component A1); B) a physical blowing agent composition, and C) optionally further additives, is suitable for producing a moldable foam for use in the automobile industry, airline industry, construction industry, packaging industry, or sports and leisure industry, or in the transport sector, and/or in engineering.Type: ApplicationFiled: April 27, 2011Publication date: December 1, 2011Applicant: BASF SEInventors: Olaf Kriha, Klaus Hahn, Philippe Desbois, Volker Warzelhan, Holger Ruckdäschel, Maximilian Hofmann, Christian Exner, Roland Hingmann
-
Publication number: 20110291040Abstract: A composition comprising at least one expandable styrene polymer component and at least one cyclohexanecarboxylic ester and also optionally further components can be processed to mechanically robust foam materials.Type: ApplicationFiled: June 1, 2011Publication date: December 1, 2011Applicant: BASF SEInventors: Wolfram Husemann, Uwe-Johannes Lehnen, Patrick Spies, Boris Breitscheidel, Klaus Hahn, Jan Holoch, Olaf Kriha, Bernhard Schmied, Pascal Hesse
-
Publication number: 20110224316Abstract: The invention provides a process for preparing expandable styrene polymers which comprises the steps of: (a) adding an aqueous phase comprising a suspension stabilizer and an organic phase comprising styrene and an initiator to a reactor, (b) commencing the addition of a blowing agent at a styrene conversion in the range from 40 to 70% and adding the blowing agent over a period ranging from 30 to 60 minutes, (c) adding a stabilizer to stabilize the bead size distribution of the expandable styrene polymer at a styrene conversion in the range from 65 to 99%.Type: ApplicationFiled: March 11, 2011Publication date: September 15, 2011Applicant: BASF SEInventors: Wolfgang Ferstl, Jun Gao, Klaus Hahn, Pascal Hesse, Jan Holoch, Klaus-Dieter Hungenberg, Wolfram Husemann, Renata Jovanovic, Wolfgang Kasten, Olaf Kriha, Eckhard Neufeld, Michel Pepers, Birgit Reinhard, Bernhard Schmied, Rudolf Süttinger, Ping Zhang