Patents by Inventor Ole A. Levring

Ole A. Levring has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10259742
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: April 16, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Patent number: 10197728
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber). The inclusion of the annular stress accommodation region allows for the formation of a large effective area optical fiber that exhibits low loss (i.e., <0.19 dB/km) in both the C-band and L-band transmission ranges.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 5, 2019
    Assignee: OFS FITEL, LLC
    Inventors: Peter I Borel, Rasmus V. S. Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Man F Yan
  • Publication number: 20180251397
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Application
    Filed: February 2, 2018
    Publication date: September 6, 2018
    Applicant: OFS Fitel, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V.S Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Patent number: 9919955
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?1, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: March 20, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Man F Yan, Peter I Borel, Tommy Geisler, Rasmus V Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Benyuan Zhu
  • Patent number: 9658395
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber).
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: May 23, 2017
    Assignee: OFS FITEL, LLC
    Inventors: Peter I Borel, Rasmus V. S. Jensen, Ole A Levring, Jorgen Ostgaard Olsen, David W Peckham, Dennis J Trevor, Patrick W Wisk, Man F Yan
  • Publication number: 20170022094
    Abstract: An optical fiber has a core region that is doped with one or more viscosity-reducing dopants in respective amounts that are configured, such that, in a Raman spectrum with a frequency shift of approximately 600 cm?, the fiber has a nanoscale structure having an integrated D2 line defect intensity of less than 0.025. Alternatively, the core region is doped with one or more viscosity-reducing dopants in respective amounts that are configured such that the fiber has a residual axial compressive stress with a stress magnitude of more than 20 MPa and a stress radial extent between 2 and 7 times the core radius. According to another aspect of the invention a majority of the optical propagation through the fiber is supported by an identified group of fiber regions comprising the core region and one or more adjacent cladding regions.
    Type: Application
    Filed: March 31, 2016
    Publication date: January 26, 2017
    Applicant: OFS Fitel, LLC
    Inventors: Man F. Yan, Peter I. Borel, Tommy Geisler, Rasmus V. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Benyuan Zhu
  • Publication number: 20160170137
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (i.e., forming a “low loss” optical fiber). The inclusion of the annular stress accommodation region allows for the formation of a large effective area optical fiber that exhibits low loss (i.e., <0.19 dB/km) in both the C-band and L-band transmission ranges.
    Type: Application
    Filed: November 12, 2015
    Publication date: June 16, 2016
    Inventors: Peter I. Borel, Rasmus V.S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Man F. Yan
  • Publication number: 20160109651
    Abstract: The core region of an optical fiber is doped with chlorine in a concentration that allows for the viscosity of the core region to be lowered, approaching the viscosity of the surrounding cladding. An annular interface region is disposed between the core and cladding and contains a concentration of fluorine dopant sufficient to match the viscosity of the core. By including this annular stress accommodation region, the cladding layer can be formed to include the relatively high concentration of fluorine required to provide the desired degree of optical signal confinement (Le., forming a “low loss” optical fiber).
    Type: Application
    Filed: August 13, 2015
    Publication date: April 21, 2016
    Inventors: Peter I. Borel, Rasmus V.S. Jensen, Ole A. Levring, Jorgen Ostgaard Olsen, David W. Peckham, Dennis J. Trevor, Patrick W. Wisk, Man F. Yan
  • Patent number: 9036998
    Abstract: An undersea long-haul transmission system includes an optical fiber transmission span and a coherent detection and digital signal processing module for providing dispersion compensation. The transmission span includes at least one fiber pair comprising substantially equal lengths of a positive-dispersion first fiber and a negative-dispersion second fiber that are configured to provide a signal output at transmission distances greater than 10,000 km, in which the combined accumulated dispersion across the operating bandwidth does not exceed the dispersion-compensating capacity of the coherent detection and digital signal processing module. Further described is a fiber for use in an undersea long-haul transmission span. At a transmission wavelength of 1550 nm, the fiber has a dispersion coefficient in the range of ?16 to ?25 ps/nm·km, and a dispersion slope in the range of 0.04 to 0.02 ps/nm2·km.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: May 19, 2015
    Assignee: OFS FITEL, LLC
    Inventor: Ole A Levring
  • Publication number: 20140050481
    Abstract: An undersea long-haul transmission system includes an optical fiber transmission span and a coherent detection and digital signal processing module for providing dispersion compensation. The transmission span includes at least one fiber pair comprising substantially equal lengths of a positive-dispersion first fiber and a negative-dispersion second fiber that are configured to provide a signal output at transmission distances greater than 10,000 km, in which the combined accumulated dispersion across the operating bandwidth does not exceed the dispersion-compensating capacity of the coherent detection and digital signal processing module. Further described is a fiber for use in an undersea long-haul transmission span. At a transmission wavelength of 1550 nm, the fiber has a dispersion coefficient in the range of ?16 to ?25 ps/nm·km, and a dispersion slope in the range of 0.04 to 0.02 ps/nm2·km.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 20, 2014
    Inventor: Ole A. Levring