Patents by Inventor Oleg Byl

Oleg Byl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140342538
    Abstract: An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B2F4 or other alternatives to BF3. Various arc chamber thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, eqillibrium shifting, optimization of extraction optics, detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system.
    Type: Application
    Filed: August 5, 2014
    Publication date: November 20, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Edward E. Jones, Sharad N. Yedave, Ying Tang, Barry Lewis Chambers, Robert Kaim, Joseph D. Sweeney, Oleg Byl, Peng Zou
  • Publication number: 20140301932
    Abstract: A reaction system and method for preparing compounds or intermediates from solid reactant materials is provided. In a specific aspect, a reaction system and methods are provided for preparation of boron-containing precursor compounds useful as precursors for ion implantation of boron in substrates. In another specific aspect, a reactor system and methods are provided for manufacture of boron precursors such as B2F4.
    Type: Application
    Filed: October 9, 2012
    Publication date: October 9, 2014
    Inventors: Oleg Byl, Edward E. Jones, Chiranjeevi Pydi, Joseph D. Sweeney
  • Patent number: 8796131
    Abstract: An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B2F4 or other alternatives to BF3. Various arc chamber thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, eqillibrium shifting, optimization of extraction optics, detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: August 5, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Edward E. Jones, Sharad N. Yedave, Ying Tang, Barry Lewis Chambers, Robert Kaim, Joseph D. Sweeney, Oleg Byl, Peng Zou
  • Publication number: 20140090598
    Abstract: An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
    Type: Application
    Filed: December 3, 2013
    Publication date: April 3, 2014
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Robert Kaim, Joseph D. Sweeney, Oleg Byl, Sharad N. Yedave, Edward E. Jones, Peng Zou, Ying Tang, Barry Lewis Chambers, Richard S. Ray
  • Publication number: 20140011346
    Abstract: An ion implantation method, in which a dopant source composition is ionized to form dopant ions, and the dopant ions are implanted in a substrate. The dopant source composition includes cluster phosphorus or cluster arsenic compounds, for achieving P- and/or As-doping, in the production of doped articles of manufacture, e.g., silicon wafers or precursor structures for manufacturing microelectronic devices.
    Type: Application
    Filed: March 22, 2012
    Publication date: January 9, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Oleg Byl, Chongying Xu, William Hunks, Richard S. Ray
  • Patent number: 8603252
    Abstract: A method and apparatus for cleaning residue from components of semiconductor processing systems used in the fabrication of microelectronic devices. To effectively remove residue, the components are contacted with a gas-phase reactive material for sufficient time and under sufficient conditions to at least partially remove the residue. When the residue and the material from which the components are constructed are different, the gas-phase reactive material is selectively reactive with the residue and minimally reactive with the materials from which the components of the ion implanter are constructed. When the residue and the material from which the components are constructed is the same, then the gas-phase reactive material may be reactive with both the residue and the component part.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: December 10, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Frank Dimeo, James Dietz, W. Karl Olander, Robert Kaim, Steven Bishop, Jeffrey W. Neuner, Jose Arno, Paul J. Marganski, Joseph D. Sweeney, David Eldridge, Sharad Yedave, Oleg Byl, Gregory T. Stauf
  • Patent number: 8598022
    Abstract: An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
    Type: Grant
    Filed: November 19, 2011
    Date of Patent: December 3, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robert Kaim, Joseph D. Sweeney, Oleg Byl, Sharad N. Yedave, Edward E. Jones, Peng Zou, Ying Tang, Barry Lewis Chambers, Richard S. Ray
  • Publication number: 20120252195
    Abstract: An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B2F4 or other alternatives to BF3. Various arc chamber thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, eqillibrium shifting, optimization of extraction optics, detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system.
    Type: Application
    Filed: October 25, 2010
    Publication date: October 4, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Edward E. Jones, Sharad N. Yedave, Ying Tang, Barry Lewis Chambers, Robert Kaim, Joseph D. Sweeney, Oleg Byl, Peng Zou
  • Publication number: 20120108044
    Abstract: An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
    Type: Application
    Filed: November 19, 2011
    Publication date: May 3, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Robert Kaim, Joseph D. Sweeney, Oleg Byl, Sharad N. Yedave, Edward E. Jones, Peng Zou, Ying Tang, Barry Lewis Chambers, Richard S. Ray
  • Patent number: 8138071
    Abstract: An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: March 20, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robert Kaim, Joseph D. Sweeney, Oleg Byl, Sharad N. Yedave, Edward E. Jones, Peng Zou, Ying Tang, Barry Lewis Chambers, Richard S. Ray
  • Publication number: 20120058252
    Abstract: Cleaning of an ion implantation system or components thereof, utilizing temperature and/or a reactive cleaning reagent enabling growth/etching of the cathode in an indirectly heated cathode for an ion implantation system by monitoring the cathode bias power and taking corrective action depending upon compared values to etch or regrow the cathode.
    Type: Application
    Filed: August 12, 2009
    Publication date: March 8, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Joseph D. Sweeney, Sharad N. Yedave, Oleg Byl, Robert Kaim, David Eldridge, Lin Feng, Steven E. Bishop, W. Karl Olander, Ying Tang
  • Publication number: 20120051994
    Abstract: An apparatus is described, as including a reaction region for contacting a reactant gas with a reactive solid under conditions effective to form an intermediate product, and an opening for allowing an unreacted portion of the gaseous reagent and the intermediate product to exit the reaction region. The apparatus can be beneficially employed to form a final product as a reaction product of the intermediate product and the reactant gas. The reaction of the reactant gas and reactive solid can be conducted in a first reaction zone, with the reaction of the reactant gas and intermediate product conducted in a second reaction zone. In a specific implementation, the reaction of the reactant gas and intermediate product is reversible, and the reactant gas and intermediate product are flowed to the second reaction zone at a controlled rate or in a controlled manner, to suppress back reaction forming the reactive solid.
    Type: Application
    Filed: August 28, 2011
    Publication date: March 1, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Oleg Byl, Edward E. Jones, Chiranjeevi Pydi, Joseph D. Sweeney
  • Patent number: 8062965
    Abstract: An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 22, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robert Kaim, Joseph D. Sweeney, Oleg Byl, Sharad N. Yedave, Edward E. Jones, Peng Zou, Ying Tang, Barry Lewis Chambers, Richard S. Ray
  • Publication number: 20110259366
    Abstract: Cleaning of an ion implantation system or components thereof, utilizing a reactive cleaning reagent enabling growth/etching of the filament in an ion source of the arc chamber, by appropriate control of temperature in the arc chamber to effect the desired filament growth or alternative filament etching. Also described is the use of reactive gases such as XeFx, WFx, AsFx, PFx and TaFx, wherein x has a stoichioimetrically appropriate value or range of values, for cleaning regions of ion implanters, or components of implanters, in in situ or ex situ cleaning arrangements, under ambient temperature, elevated temperature or plasma conditions. Among specific reactive cleaning agents, BrF3 is described as useful for cleaning ion implant systems or component(s) thereof, in in situ or ex situ cleaning arrangements.
    Type: Application
    Filed: February 11, 2009
    Publication date: October 27, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Joseph D. Sweeney, Sharad N. Yedave, Oleg Byl, Robert Kaim, David Eldridge, Steven Sergi, Lin Feng, Steven E. Bishop, W. Karl Olander, Ying Tang
  • Publication number: 20110159671
    Abstract: An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
    Type: Application
    Filed: March 15, 2011
    Publication date: June 30, 2011
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Robert KAIM, Joseph D. Sweeney, Oleg Byl, Sharad N. Yedave, Edward E. Jones, Peng Zou, Ying Tang, Barry Lewis Chambers, Richard S. Ray
  • Publication number: 20110097882
    Abstract: An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
    Type: Application
    Filed: October 27, 2010
    Publication date: April 28, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Robert Kaim, Joseph D. Sweeney, Oleg Byl, Sharad N. Yedave, Edward E. Jones, Peng Zou, Ying Tang, Barry Lewis Chambers, Richard S. Ray
  • Publication number: 20110021011
    Abstract: A method of implanting carbon ions into a target substrate, including: ionizing a carbon containing dopant material to produce a plasma having ions; optionally co-flowing an additional gas or series of gases with the carbon-containing dopant material; and implanting the ions into the target substrate. The carbon-containing dopant material is of the formula CwFxOyHz wherein if w=1, then x>0 and y and z can take any value, and wherein if w>1 then x or y is >0, and z can take any value. Such method significantly improves the efficiency of an ion implanter tool, in relation to the use of carbon source gases such as carbon monoxide or carbon dioxide.
    Type: Application
    Filed: July 22, 2010
    Publication date: January 27, 2011
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Joseph D. SWEENEY, Oleg BYL, Robert KAIM
  • Publication number: 20100154835
    Abstract: A method and apparatus for cleaning residue from components of semiconductor processing systems used in the fabrication of microelectronic devices. To effectively remove residue, the components are contacted with a gas-phase reactive material for sufficient time and under sufficient conditions to at least partially remove the residue. When the residue and the material from which the components are constructed are different, the gas-phase reactive material is selectively reactive with the residue and minimally reactive with the materials from which the components of the ion implanter are constructed. When the residue and the material from which the components are constructed is the same, then the gas-phase reactive material may be reactive with both the residue and the component part.
    Type: Application
    Filed: April 26, 2007
    Publication date: June 24, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Frank Dimeo, James Dietz, Karl W. Olander, Robert Kaim, Steven Bishop, Jeffrey W. Neuner, Jose Arno, Paul J. Marganski, Joseph D. Sweeney, David Eldridge, Sharad Yedave, Oleg Byl, Gregory T. Stauf