Patents by Inventor Oleg G. Gluschenkov

Oleg G. Gluschenkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8633071
    Abstract: A semiconductor structure and method of manufacturing is provided. The method of manufacturing includes forming shallow trench isolation (STI) in a substrate and providing a first material and a second material on the substrate. The first material and the second material are mixed into the substrate by a thermal anneal process to form a first island and second island at an nFET region and a pFET region, respectively. A layer of different material is formed on the first island and the second island. The STI relaxes and facilitates the relaxation of the first island and the second island. The first material may be deposited or grown Ge material and the second material may deposited or grown Si:C or C. A strained Si layer is formed on at least one of the first island and the second island.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: January 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Duresti Chidambarrao, Omer H. Dokumaci, Oleg G. Gluschenkov
  • Patent number: 8232153
    Abstract: A semiconductor structure and method of manufacturing is provided. The method of manufacturing includes forming shallow trench isolation (STI) in a substrate and providing a first material and a second material on the substrate. The first material and the second material are mixed into the substrate by a thermal anneal process to form a first island and second island at an nFET region and a pFET region, respectively. A layer of different material is formed on the first island and the second island. The STI relaxes and facilitates the relaxation of the first island and the second island. The first material may be deposited or grown Ge material and the second material may deposited or grown Si:C or C. A strained Si layer is formed on at least one of the first island and the second island.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Omer H. Dokumaci, Oleg G. Gluschenkov
  • Publication number: 20120052653
    Abstract: A semiconductor structure and method of manufacturing is provided. The method of manufacturing includes forming shallow trench isolation (STI) in a substrate and providing a first material and a second material on the substrate. The first material and the second material are mixed into the substrate by a thermal anneal process to form a first island and second island at an nFET region and a pFET region, respectively. A layer of different material is formed on the first island and the second island. The STI relaxes and facilitates the relaxation of the first island and the second island. The first material may be deposited or grown Ge material and the second material may deposited or grown Si:C or C. A strained Si layer is formed on at least one of the first island and the second island.
    Type: Application
    Filed: October 21, 2011
    Publication date: March 1, 2012
    Applicant: International Business Machines Corporation
    Inventors: Duresetl CHIDAMBARRAO, Omer H. Dokumaci, Oleg G. Gluschenkov
  • Patent number: 8119472
    Abstract: A semiconductor structure and method of manufacturing is provided. The method of manufacturing includes forming shallow trench isolation (STI) in a substrate and providing a first material and a second material on the substrate. The first material and the second material are mixed into the substrate by a thermal anneal process to form a first island and second island at an nFET region and a pFET region, respectively. A layer of different material is formed on the first island and the second island. The STI relaxes and facilitates the relaxation of the first island and the second island. The first material may be deposited or grown Ge material and the second material may deposited or grown Si:C or C. A strained Si layer is formed on at least one of the first island and the second island.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: February 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Omer H. Dokumaci, Oleg G. Gluschenkov
  • Patent number: 8067805
    Abstract: A method of forming a field effect transistor creates shallower and sharper junctions, while maximizing dopant activation in processes that are consistent with current manufacturing techniques. More specifically, the invention increases the oxygen content of the top surface of a silicon substrate. The top surface of the silicon substrate is preferably cleaned before increasing the oxygen content of the top surface of the silicon substrate. The oxygen content of the top surface of the silicon substrate is higher than other portions of the silicon substrate, but below an amount that would prevent epitaxial growth. This allows the invention to epitaxially grow a silicon layer on the top surface of the silicon substrate. Further, the increased oxygen content substantially limits dopants within the epitaxial silicon layer from moving into the silicon substrate.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: November 29, 2011
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Omer H. Dokumaci, Oleg G. Gluschenkov, Werner A. Rausch
  • Patent number: 8013392
    Abstract: Semiconductor structure formed on a substrate and process of forming the semiconductor. The semiconductor includes a plurality of field effect transistors having a first portion of field effect transistors (FETS) and a second portion of field effect transistors. A first stress layer has a first thickness and is configured to impart a first determined stress to the first portion of the plurality of field effect transistors. A second stress layer has a second thickness and is configured to impart a second determined stress to the second portion of the plurality of field effect transistors.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: September 6, 2011
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Oleg G. Gluschenkov, Huilong Zhu
  • Patent number: 7847358
    Abstract: A semiconductor structure formed on a substrate and process for preventing oxidation induced stress in a determined portion of the substrate. The structure includes an n-FET device and a p-FET device, and a shallow trench isolation having at least one overhang is selectively configured to prevent oxidation induced stress in a determined portion of the substrate. The at least one overhang is selectively configured to prevent oxidation induced stress in at least one of a direction parallel to and a direction transverse to a direction of a current flow. For the n-FET device, the at least one overhang is selectively arranged in directions of and transverse to a current flow, and for the p-FET device, the at least one overhang is arranged transverse to the current flow to prevent performance degradation from compressive stresses.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: December 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bruce B Doris, Oleg G Gluschenkov
  • Patent number: 7816237
    Abstract: A method of forming a field effect transistor creates shallower and sharper junctions, while maximizing dopant activation in processes that are consistent with current manufacturing techniques. More specifically, the invention increases the oxygen content of the top surface of a silicon substrate. The top surface of the silicon substrate is preferably cleaned before increasing the oxygen content of the top surface of the silicon substrate. The oxygen content of the top surface of the silicon substrate is higher than other portions of the silicon substrate, but below an amount that would prevent epitaxial growth. This allows the invention to epitaxially grow a silicon layer on the top surface of the silicon substrate. Further, the increased oxygen content substantially limits dopants within the epitaxial silicon layer from moving into the silicon substrate.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: October 19, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Omer H. Dokumaci, Oleg G. Gluschenkov, Werner A. Rausch
  • Patent number: 7683418
    Abstract: The present invention provides a method for depositing a dielectric stack comprising forming a dielectric layer atop a substrate, the dielectric layer comprising at least oxygen and silicon atoms; forming a layer of metal atoms atop the dielectric layer within a non-oxidizing atmosphere, wherein the layer of metal atoms has a thickness of less than about 15 ?; forming an oxygen diffusion barrier atop the layer of metal atoms, wherein the non-oxidizing atmosphere is maintained; forming a gate conductor atop the oxygen diffusion barrier; and annealing the layer of metal atoms and the dielectric layer, wherein the layer of metal atoms reacts with the dielectric layer to provide a continuous metal oxide layer having a dielectric constant ranging from about 25 to about 30 and a thickness less than about 15 ?.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Oleg G. Gluschenkov, Michael A. Gribelyuk, Kwong Hon Wong
  • Patent number: 7569848
    Abstract: Compressive or tensile materials are selectively introduced beneath and in alignment with spacer areas and adjacent to channel areas of a semiconductor substrate to enhance or degrade electron and hole mobility in CMOS circuits. A process entails steps of creating dummy spacers, forming a dielectric mandrel (i.e., mask), removing the dummy spacers, etching recesses into the underlying semiconductor substrate, introducing a compressive or tensile material into a portion of each recess, and filling the remainder of each recess with substrate material.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: August 4, 2009
    Assignee: International Business Machines Corporation
    Inventors: Michael P. Belyansky, Bruce B. Doris, Oleg G. Gluschenkov
  • Patent number: 7560328
    Abstract: The present invention provides a strained-Si structure, in which the nFET regions of the structure are strained in tension and the pFET regions of the structure are strained in compression. Broadly the strained-Si structure comprises a substrate, a first layered stack atop the substrate, the first layered stack comprising a first Si-containing portion of the substrates a compressive layer atop the Si-containing portion of the substrate, and a semiconducting silicon layer atop the compressive layer; and a second layered stack atop the substrate, the second layered stack comprising a second-silicon containing layer portion of the substrate, a tensile layer atop the second Si-containing portion of the substrate, and a second semiconducting silicon-layer atop the tensile layer.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: July 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Omer H. Dokumaci, Oleg G. Gluschenkov, Huilong Zhu
  • Publication number: 20090101993
    Abstract: The present invention provides a method for depositing a dielectric stack comprising forming a dielectric layer atop a substrate, the dielectric layer comprising at least oxygen and silicon atoms; forming a layer of metal atoms atop the dielectric layer within a non-oxidizing atmosphere, wherein the layer of metal atoms has a thickness of less than about 15 ?; forming an oxygen diffusion barrier atop the layer of metal atoms, wherein the non-oxidizing atmosphere is maintained; forming a gate conductor atop the oxygen diffusion barrier; and annealing the layer of metal atoms and the dielectric layer, wherein the layer of metal atoms reacts with the dielectric layer to provide a continuous metal oxide layer having a dielectric constant ranging from about 25 to about 30 and a thickness less than about 15 ?.
    Type: Application
    Filed: November 25, 2008
    Publication date: April 23, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dae-Gyu Park, Oleg G. Gluschenkov, Michael A. Gribelyuk, Kwong Hon Wong
  • Patent number: 7521345
    Abstract: The present invention provides a method for depositing a dielectric stack comprising forming a dielectric layer atop a substrate, the dielectric layer comprising at least oxygen and silicon atoms; forming a layer of metal atoms atop the dielectric layer within a non-oxidizing atmosphere, wherein the layer of metal atoms has a thickness of less than about 15 ?; forming an oxygen diffusion barrier atop the layer of metal atoms, wherein the non-oxidizing atmosphere is maintained; forming a gate conductor atop the oxygen diffusion barrier; and annealing the layer of metal atoms and the dielectric layer, wherein the layer of metal atoms reacts with the dielectric layer to provide a continuous metal oxide layer having a dielectric constant ranging from about 25 to about 30 and a thickness less than about 15 ?.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: April 21, 2009
    Assignee: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Oleg G. Gluschenkov, Michael A. Gribelyuk, Kwong H. Wong
  • Publication number: 20080237720
    Abstract: Semiconductor structure formed on a substrate and process of forming the semiconductor. The semiconductor includes a plurality of field effect transistors having a first portion of field effect transistors (FETS) and a second portion of field effect transistors. A first stress layer has a first thickness and is configured to impart a first determined stress to the first portion of the plurality of field effect transistors. A second stress layer has a second thickness and is configured to impart a second determined stress to the second portion of the plurality of field effect transistors.
    Type: Application
    Filed: September 28, 2007
    Publication date: October 2, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Oleg G. Gluschenkov, Huilong Zhu
  • Publication number: 20080233687
    Abstract: A method of forming a field effect transistor creates shallower and sharper junctions, while maximizing dopant activation in processes that are consistent with current manufacturing techniques. More specifically, the invention increases the oxygen content of the top surface of a silicon substrate. The top surface of the silicon substrate is preferably cleaned before increasing the oxygen content of the top surface of the silicon substrate. The oxygen content of the top surface of the silicon substrate is higher than other portions of the silicon substrate, but below an amount that would prevent epitaxial growth. This allows the invention to epitaxially grow a silicon layer on the top surface of the silicon substrate. Further, the increased oxygen content substantially limits dopants within the epitaxial silicon layer from moving into the silicon substrate.
    Type: Application
    Filed: June 4, 2008
    Publication date: September 25, 2008
    Applicant: International Business Machines Corporation
    Inventors: Huajie Chen, Omer H. Dokumaci, Oleg G. Gluschenkov, Werner A. Rausch
  • Publication number: 20080230840
    Abstract: A method of forming a field effect transistor creates shallower and sharper junctions, while maximizing dopant activation in processes that are consistent with current manufacturing techniques. More specifically, the invention increases the oxygen content of the top surface of a silicon substrate. The top surface of the silicon substrate is preferably cleaned before increasing the oxygen content of the top surface of the silicon substrate. The oxygen content of the top surface of the silicon substrate is higher than other portions of the silicon substrate, but below an amount that would prevent epitaxial growth. This allows the invention to epitaxially grow a silicon layer on the top surface of the silicon substrate. Further, the increased oxygen content substantially limits dopants within the epitaxial silicon layer from moving into the silicon substrate.
    Type: Application
    Filed: June 4, 2008
    Publication date: September 25, 2008
    Applicant: International Business Machines Corporation
    Inventors: Huajie Chen, Omer H. Dokumaci, Oleg G. Gluschenkov, Werner A. Rausch
  • Patent number: 7402870
    Abstract: A method of forming a field effect transistor creates shallower and sharper junctions, while maximizing dopant activation in processes that are consistent with current manufacturing techniques. More specifically, the invention increases the oxygen content of the top surface of a silicon substrate. The top surface of the silicon substrate is preferably cleaned before increasing the oxygen content of the top surface of the silicon substrate. The oxygen content of the top surface of the silicon substrate is higher than other portions of the silicon substrate, but below an amount that would prevent epitaxial growth. This allows the invention to epitaxially grow a silicon layer on the top surface of the silicon substrate. Further, the increased oxygen content substantially limits dopants within the epitaxial silicon layer from moving into the silicon substrate.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: July 22, 2008
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Omer H. Dokumaci, Oleg G. Gluschenkov, Werner A. Rausch
  • Patent number: 7396714
    Abstract: A process is provided for making a PFET and an NFET. Areas in a first semiconductor region adjacent to a gate stack are recessed. A lattice-mismatched semiconductor layer is grown in the recesses to apply a strain to the channel region of the PFET adjacent thereto. A layer of the first semiconductor material can be grown over the lattice-mismatched semiconductor layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: July 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Dureseti Chidambarrao, Oleg G. Gluschenkov, An L. Steegen, Haining S. Yang
  • Patent number: 7291528
    Abstract: A p-type field effect transistor (PFET) and an n-type field effect transistor (NFET) of an integrated circuit are provided. A first strain is applied to the channel region of the PFET but not the NFET via a lattice-mismatched semiconductor layer such as silicon germanium disposed in source and drain regions of only the PFET and not of the NFET. A process of making the PFET and NFET is provided. Trenches are etched in the areas to become the source and drain regions of the PFET and a lattice-mismatched silicon germanium layer is grown epitaxially therein to apply a strain to the channel region of the PFET adjacent thereto. A layer of silicon can be grown over the silicon germanium layer and a salicide formed from the layer of silicon to provide low-resistance source and drain regions.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: November 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Huajie Chen, Dureseti Chidambarrao, Oleg G. Gluschenkov, An L. Steegen, Haining S. Yang
  • Patent number: 7285826
    Abstract: Semiconductor structure formed on a substrate and process of forming the semiconductor. The semiconductor includes a plurality of field effect transistors having a first portion of field effect transistors (FETS) and a second portion of field effect transistors. A first stress layer has a first thickness and is configured to impart a first determined stress to the first portion of the plurality of field effect transistors. A second stress layer has a second thickness and is configured to impart a second determined stress to the second portion of the plurality of field effect transistors.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: October 23, 2007
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Oleg G. Gluschenkov, Huilong Zhu