Patents by Inventor Oleg Mikhailovich Zozulya

Oleg Mikhailovich Zozulya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150300157
    Abstract: A method of tracking a treatment fluid in a subterranean formation penetrated by a wellbore provides for injecting the treatment fluid with the plurality of tracer agents into the well and the formation. The tracer agents are high viscous liquid droplets having a diameter of not more than 1000 nm. Location and distribution of the treatment fluid is determined by detecting changes in physical properties of the formation caused by arrival of the treatment fluid comprising the plurality of the tracer agents.
    Type: Application
    Filed: April 24, 2015
    Publication date: October 22, 2015
    Inventors: Ashok Belani, Dimitri Vladilenovich Pissarenko, Kreso Kurt Butula, Sergey Sergeevich Sanfonov, Oleg Yurievich Dinariev, Oleg Mikhailovich Zozulya
  • Publication number: 20150097135
    Abstract: A polymer solution is mechanically mixed with at least one surfactant solution under conditions preventing air access. The produced polymer-surfactant solution is saturated with a gas by increasing pressure to a value ensuring complete gas dissolution and exceeding an expected pressure of use of aphrons. Then, the pressure is rapidly reduced to a value corresponding to the expected pressure of use of the aphrons and narrow size distribution aphrons are produced.
    Type: Application
    Filed: September 25, 2014
    Publication date: April 9, 2015
    Inventors: OLEG MIKHAILOVICH ZOZULYA, VERA ANATOLYEVNA PLETNEVA
  • Patent number: 8959991
    Abstract: A method for estimating properties of a subterranean formation penetrated by a wellbore provides for injecting a fluid with the plurality of tracer agents wherein each tracer agent is an object of submicron scale, into the wellbore and formation, flowing the fluid back from the subterranean formation and determining the properties of the formation. The properties are determined by analyzing changes in the tracers size and type distribution function between the injection fluid and produced fluid.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: February 24, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Dimitri Vladilenovich Pissarenko, Kreso Kurt Butula, Sergey Sergeevich Safonov, Denis Vladimirovich Rudenko, Oleg Yurievich Dinariev, Oleg Mikhailovich Zozulya
  • Publication number: 20140000357
    Abstract: A method for estimating properties of a subterranean formation penetrated by a wellbore provides for injecting a fluid with the plurality of tracer agents wherein each tracer agent is an object of submicron scale, into the wellbore and formation, flowing the fluid back from the subterranean formation and determining the properties of the formation. The properties are determined by analyzing changes in the tracers size and type distribution function between the injection fluid and produced fluid.
    Type: Application
    Filed: December 21, 2010
    Publication date: January 2, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Dimitri Vladilenovich Pissarenko, Kreso Kurt Butula, Sergey Sergeevich Safonov, Denis Vladimirovich Rudenko, Oleg Yurievich Dinariev, Oleg Mikhailovich Zozulya
  • Publication number: 20130341012
    Abstract: A method of tracking a treatment fluid in a subterranean formation penetrated by a wellbore provides for injecting the treatment fluid with the plurality of tracer agents into the well and the formation. Each tracer agent is an object of submicron scale. The location and distribution of the treatment fluid is determined by detecting changes in the physical properties of the formation caused by the arrival of the treatment fluid comprising a plurality of tracer agents.
    Type: Application
    Filed: December 30, 2010
    Publication date: December 26, 2013
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Ashok Belani, Dimitri Vladilenovich Pissarenko, Kreso Kurt Butula, Sergey Sergeevich Safonov, Oleg Yurievich Dinariev, Oleg Mikhailovich Zozulya
  • Patent number: 8607628
    Abstract: A method for determining properties of a formation is described herein. The method includes disposing a well-logging tool in a borehole. The well-logging tool includes a device for varying temperature of the formation and two acoustic logging probes located symmetrically along the well-logging tool length relative to the device for varying temperature of the formation. During the logging tool movement in the borehole, continuous varying of the formation temperature, continuous acoustic logging, and continuous measurement of formation temperature are performed. Dependencies of the measured velocity and attenuation of the Stoneley waves as functions of the measured temperature of the formation are obtained. Based on the obtained dependencies, properties of the formation are determined.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: December 17, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Marwan Charara, Anton Vladimirovich Parshin, Evgeny Nikolaevich Dyshlyuk, Oleg Mikhailovich Zozulya, Sergey Sergeevich Safonov
  • Patent number: 8396676
    Abstract: The invention relates to measuring visco-elastic fluid parameters, in particular, in the oil production industry, for defining heavy oil parameters during field development. The method involves the excitation of a hollow resonance device oscillations by sending a continuous variable-frequency signal to two transmitting transducers located on the outer surface the said resonance device. Oscillations are recorded by a receiving transducer. Amplitude-vs-frequency response curve is plotted and effective resonance frequency ?r is determined. Thereafter, a cavity of the said resonance device is filled with a medium under examination, and oscillations are excited to obtain associated amplitude-vs-frequency response values. An axially symmetric capacity placed in a thermostabilized chamber is used as the resonance device.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: March 12, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Oleg Mikhailovich Zozulya, Igor Borisovich Esypov, Andrey Viktorovich Fokin
  • Publication number: 20110154895
    Abstract: The method for a productive formation properties determination comprises positioning a complex well-logging tool in a borehole, the well-logging tool consists of the device for the formation temperature impact and two similar logging probes located symmetrically along the well-logging tool relative to the device for the formation temperature impact. During the logging tool movement in the borehole continuous formation temperature impact and formation temperature measurement are performed. Based on the obtained dependencies of the formation parameters in question as a function of temperature the productive formation properties are determined.
    Type: Application
    Filed: December 29, 2010
    Publication date: June 30, 2011
    Applicant: Schlumberger Technology Corporation
    Inventors: Marwan Charara, Anton Vladimirovich Parshin, Evgeny Nikolaevich Dyshlyuk, Oleg Mikhailovich Zozulya, Sergey Sergeevich Safonov
  • Publication number: 20110130980
    Abstract: The invention relates to measuring visco-elastic fluid parameters, in particular, in the oil production industry, for defining heavy oil parameters during field development. The method involves the excitation of a hollow resonance device oscillations by sending a continuous variable-frequency signal to two transmitting transducers located on the outer surface the said resonance device. Oscillations are recorded by a receiving transducer. Amplitude-vs-frequency response curve is plotted and effective resonance frequency ?r is determined. Thereafter, a cavity of the said resonance device is filled with a medium under examination, and oscillations are excited to obtain associated amplitude-vs-frequency response values. An axially symmetric capacity placed in a thermostabilized chamber is used as the resonance device.
    Type: Application
    Filed: November 16, 2010
    Publication date: June 2, 2011
    Applicant: Schlumberger Technology Corporation
    Inventors: Oleg Mikhailovich Zozulya, Igor Borisovich Esypov, Andrey Viktorovich Fokin