Patents by Inventor Oleg N. Senkov

Oleg N. Senkov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11846008
    Abstract: The present invention relates to Nb-based refractory alloys that are less expensive and less dense than current Nb-based refractory alloys, have better ductility than current Nb-based refractory alloys, yet which have similar or better high temperature strengths and oxidation resistance when compared to current Nb-based refractory alloys. Such Nb-based refractory alloys typically continue to be compatible with current coating systems for Nb-based refractory alloys. Such Nb-based refractory alloys are disclosed herein.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: December 19, 2023
    Assignee: United States of America as represented by Secretary of the Air Force
    Inventors: Kevin J. Chaput, Oleg N. Senkov, Todd M. Butler, Satish I Rao
  • Publication number: 20220246947
    Abstract: A High Entropy Alloy (HEA) anode for a Solid Oxide Fuel Cell (SOFC), in which the HEA anode comprises: approximately ten (˜10) atomic percent (%) to ˜35% Copper (Cu) (preferably ˜23% to ˜27% Cu, and more preferably ˜24% to ˜26% Cu); ˜10% to ˜35% Iron (Fe) (preferably ˜23% to ˜27% Fe, and more preferably ˜24% to ˜26% Fe); ˜10% to ˜35% Cobalt (Co) (preferably ˜23% to ˜27% Co, and more preferably ˜24% to ˜26% Co); ˜5% to ˜25% Nickel (Ni) (preferably ˜13% to ˜17% Ni, and more preferably ˜14% to ˜16% Ni); ˜5% to ˜20% Manganese (Mn) (preferably ˜8% to 13% Mn, and more preferably ˜9% to 11% Mn); and less than a total of ˜2% other elements as impurities (preferably less than ˜1% total of other elements or impurities, and more preferably less than ˜0.5% total of other elements or impurities), with the sum of all of the alloying elements (Cu, Fe, Co, Ni, Mn, and impurities or other elements) totaling 100%.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 4, 2022
    Inventors: Rabi S. Bhattacharya, Oleg N. Senkov, Prabhakar Singh
  • Publication number: 20120087826
    Abstract: The present invention discloses a high strength Al—Zn—Mg—Cu (7000 series) alloy that can be cast, the cast alloy having a tensile strength of at least 500 megapascals (MPa) and 4% elongation. The cast alloy composition can include about 5.5-9.0 weight percent (wt. %) of zinc, 2.0-3.5 wt. % of magnesium, 0.1-0.5 wt. % scandium, 0.05-0.20 wt. % zirconium, 0.5-3.0 wt. % copper, 0.10-0.45 wt. % manganese, 0.01-0.35 wt. % iron, 0.01-0.20 wt. % silicon with a balance of aluminum and possible casting impurities. The alloy also has good fluidity comparable to high silicon cast aluminum alloys and components can be manufactured using direct chill casting, sand casting, and/or sand casting under high pressure.
    Type: Application
    Filed: October 4, 2011
    Publication date: April 12, 2012
    Applicant: UES, INC.
    Inventors: Oleg N. Senkov, Svetlana V. Senkova
  • Patent number: 7060139
    Abstract: The present invention provides a high strength aluminum alloy composition and applications of the high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in ambient temperatures and cryogenic temperatures.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: June 13, 2006
    Assignee: UES, Inc.
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle, Yuly V. Milman, Dina V. Lotsko, Alexandr I. Sirko
  • Patent number: 7048815
    Abstract: The present invention provides a method of making a high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in ambient temperatures and cryogenic temperatures.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: May 23, 2006
    Assignee: UES, Inc.
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle
  • Publication number: 20040089382
    Abstract: The present invention provides a method of making a high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in ambient temperatures and cryogenic temperatures.
    Type: Application
    Filed: November 8, 2002
    Publication date: May 13, 2004
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle
  • Publication number: 20040089378
    Abstract: The present invention provides a high strength aluminum alloy composition and applications of the high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in temperatures and cryogenic temperatures.
    Type: Application
    Filed: November 8, 2002
    Publication date: May 13, 2004
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle, Yuly V. Milman, Dina V. Lotsko, Alexandr I. Sirko
  • Patent number: 6623566
    Abstract: A method for selecting alloying elements for complex, multi-component amorphous metal alloys is provided in which the solvent element is the largest atom with a concentration of 40-80 at %, the second most concentrated element has a radius of 65-83 % the radius of the solvent atom and a concentration of 10-40 at % in the alloy, with other elements selected at lower concentrations. For ternary alloys specified by this invention, the third element must have an atomic radius within 70-92 % of the solvent atom radius. In the preferred embodiment, alloys with four or more elements are specified, where the third elements must have an atomic radius within 70-80 %, the fourth element must have an atomic radius within 80-92 % of the solvent atom radius, and all other solute elements must have atomic radii within 70-92 % of the solvent atom radius.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: September 23, 2003
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Oleg N. Senkov, Daniel B. Miracle
  • Patent number: 6152982
    Abstract: The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: November 28, 2000
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Francis H. Froes, Baburaj G. Eranezhuth, Oleg N. Senkov