Patents by Inventor Oleksandr V. Kuznetsov

Oleksandr V. Kuznetsov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11305251
    Abstract: A composition of matter includes a liquid and nanoparticles suspended in the liquid. The nanoparticles each include silica, alumina, and an organosilicon functional group having a molecular weight of at least 200. A method includes functionalizing a surface of nanoparticles with an organosilicon functional group and dispersing the nanoparticles in a liquid to form a suspension. The functional group has a molecular weight of at least 200. The nanoparticles each include silica and alumina at a surface thereof.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: April 19, 2022
    Assignee: Baker Hughes Holdings LLC
    Inventors: Radhika Suresh, Devesh K. Agrawal, Oleksandr V. Kuznetsov, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Publication number: 20220010198
    Abstract: A method of recovering hydrocarbons comprises introducing a suspension comprising nanoparticles to a material and contacting surfaces of the material with the suspension. After introducing the suspension comprising the nanoparticles to the material, the method further includes introducing at least one charged surfactant to the material and removing hydrocarbons from the material. Accordingly, in some embodiments, the nanoparticles may be introduced to the material prior to introduction of the surfactant to the material. Related methods of recovering hydrocarbons from a material are also disclosed.
    Type: Application
    Filed: September 24, 2021
    Publication date: January 13, 2022
    Inventors: Oleksandr V. Kuznetsov, Devesh K. Agrawal, Radhika Suresh, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 11149184
    Abstract: A method of recovering hydrocarbons comprises introducing a suspension comprising nanoparticles to a material and contacting surfaces of the material with the suspension. After introducing the suspension comprising the nanoparticles to the material, the method further includes introducing at least one charged surfactant to the material and removing hydrocarbons from the material. Accordingly, in some embodiments, the nanoparticles may be introduced to the material prior to introduction of the surfactant to the material. Related methods of recovering hydrocarbons from a material are also disclosed.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: October 19, 2021
    Assignee: Baker Hughes Holdings LLC
    Inventors: Oleksandr V. Kuznetsov, Devesh K. Agrawal, Radhika Suresh, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10907089
    Abstract: A method of stabilizing one or more clays within a subterranean formation comprises forming at least one treatment fluid comprising anionic silica particles, cationic silica particles, and at least one base material. The at least one treatment fluid is provided into a subterranean formation containing clay particles to attach at least a portion of the anionic silica particles and the cationic silica particles to surfaces of the clay particles and form stabilized clay particles. A method of treating one or more clays contained within a subterranean formation, and a treatment fluid for a subterranean formation.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 2, 2021
    Assignee: Baker Hughes Holdings LLC
    Inventors: Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku, John C. Welch
  • Publication number: 20200406217
    Abstract: A composition of matter includes a liquid and nanoparticles suspended in the liquid. The nanoparticles each include silica, alumina, and an organosilicon functional group having a molecular weight of at least 200. A method includes functionalizing a surface of nanoparticles with an organosilicon functional group and dispersing the nanoparticles in a liquid to form a suspension. The functional group has a molecular weight of at least 200. The nanoparticles each include silica and alumina at a surface thereof.
    Type: Application
    Filed: July 6, 2020
    Publication date: December 31, 2020
    Inventors: Radhika Suresh, Devesh K. Agrawal, Oleksandr V. Kuznetsov, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10858576
    Abstract: A method of providing an optimal surfactant blend to improve waterflood efficiency comprises selecting candidate surfactant blends based on one or more of the following: a reservoir condition; information of a crude oil; information of an injection fluid; or information of a formation fluid, each candidate surfactant blends comprising at least two surfactants, one surfactant having a higher relative affinity for the crude oil than for the injection fluid and at least one surfactant having a higher affinity for the injection fluid than for the crude oil; evaluating phase behavior of the candidate surfactant blends to select surfactant blends that form a Winsor III system with the crude oil and the injection fluid at a reservoir temperature; and evaluating the selected surfactant blends in a porous media to select an optimal surfactant blend which achieves at least an additional 10% crude oil recovery after waterflood.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: December 8, 2020
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Lirio Quintero, Henry Nguyen, Oleksandr V. Kuznetsov
  • Patent number: 10702843
    Abstract: A composition of matter includes a liquid and nanoparticles suspended in the liquid. The nanoparticles each include silica, alumina, and an organosilicon functional group having a molecular weight of at least 200. A method includes functionalizing a surface of nanoparticles with an organosilicon functional group and dispersing the nanoparticles in a liquid to form a suspension. The functional group has a molecular weight of at least 200. The nanoparticles each include silica and alumina at a surface thereof.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: July 7, 2020
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Radhika Suresh, Devesh K. Agrawal, Oleksandr V. Kuznetsov, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10570035
    Abstract: A method of removing fines and coarse particles from tailings comprises forming a slurry comprising water and oil sands and separating bitumen from tailings comprising fines and coarse particles. Functionalized nanoparticles each comprising a core of carbon nitride and functionalized with one or more exposed cationic groups are mixed with the tailings. The functionalized nanoparticles and the fines interact to form agglomerates comprising the functionalized nanoparticles and the fines attached to the one or more exposed cationic groups. The agglomerates are removed from the tailings to form an aqueous solution having suspended therein fewer fines and coarse particles than are suspended within the tailings.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: February 25, 2020
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Oleg A. Mazyar, Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Publication number: 20200058841
    Abstract: A thermoelectric material includes a polymer matrix and a plurality of partially coated particles dispersed within the polymer matrix. Each particle of the plurality has a discontinuous coating of metal on a carbon-based material. A method includes dispersing functionalized particles comprising a carbon-based material in a solvent; providing a metal salt in the solvent; and forming a plurality of distinct metal volumes on a surface of the functionalized particles to form partially coated particles. The distinct metal volumes are thermally insulated from other volumes of the plurality. A composition of matter includes a discontinuous coating of metal on a surface of a carbon-based material. The carbon-based material is selected from the group consisting of graphene oxide and functionalized carbon nanotubes.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 20, 2020
    Inventors: Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Patent number: 10513451
    Abstract: A process for drying mature fine tailings is provided. A low molecular weight anionic organic polymer is contacted with a tailings stream to flocculate mature fine tailings and enhance dewatering. The tailings stream can contain, for example, water, sand, silt and fines clays produced from a bitumen extraction process for oil sands ore. The process can also involve rigidification of the suspension.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: December 24, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Christabel T. Tomla, Oleksandr V. Kuznetsov, Radhika Suresh
  • Patent number: 10497849
    Abstract: A thermoelectric composite includes a plurality of particles comprising a crosslinked polymer having a heat deflection temperature greater than or equal to 200° F. and a segregated network comprising a first filler material which is disposed between the particles to produce a thermoelectric response in response to application of a voltage difference or temperature difference across the thermoelectric composite. The first filler material includes a carbon material, a metal, a metal disposed on a carbon material, or a combination thereof. A process for preparing a thermoelectric article includes combining a first filler material and a plurality of particles comprising a polymer to form a composition and molding the composition to form a thermoelectric article, wherein the thermoelectric article is configured to produce a thermoelectric response in response to application of a voltage difference or temperature difference across the article.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: December 3, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Sayantan Roy, David Peter Gerrard, Oleksandr V. Kuznetsov
  • Patent number: 10468574
    Abstract: A thermoelectric material includes a polymer matrix and a plurality of partially coated particles dispersed within the polymer matrix. Each particle of the plurality has a discontinuous coating of metal on a carbon-based material. A method includes dispersing functionalized particles comprising a carbon-based material in a solvent; providing a metal salt in the solvent; and forming a plurality of distinct metal volumes on a surface of the functionalized particles to form partially coated particles. The distinct metal volumes are thermally insulated from other volumes of the plurality. A composition of matter includes a discontinuous coating of metal on a surface of a carbon-based material. The carbon-based material is selected from the group consisting of graphene oxide and functionalized carbon nanotubes.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: November 5, 2019
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Publication number: 20190299184
    Abstract: A composition of matter includes a liquid and nanoparticles suspended in the liquid. The nanoparticles each include silica, alumina, and an organosilicon functional group having a molecular weight of at least 200. A method includes functionalizing a surface of nanoparticles with an organosilicon functional group and dispersing the nanoparticles in a liquid to form a suspension. The functional group has a molecular weight of at least 200. The nanoparticles each include silica and alumina at a surface thereof.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 3, 2019
    Inventors: Radhika Suresh, Devesh K. Agrawal, Oleksandr V. Kuznetsov, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10421047
    Abstract: A filter membrane includes carbon nanotubes and carbon nitride nanoparticles. Inter-particle atomic interactions between the carbon nanotubes and the carbon nitride nanoparticles bind the carbon nanotubes and the carbon nitride nanoparticles together. A filter cartridge includes such a filter membrane disposed within an outer housing between a fluid inlet and a fluid outlet such that fluid passing through the outer housing between the fluid inlet and the fluid outlet passes through the filter membrane. Such filter membranes may be formed by dispersing carbon nanotubes and carbon nitride nanoparticles in a liquid to form a suspension, and passing the suspension through a filter to deposit the nanotubes and nanoparticles on the filter. Liquid may be filtered by causing the liquid to pass through such a filter membrane.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: September 24, 2019
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Darryl N. Ventura, Sankaran Murugesan, Oleksandr V. Kuznetsov, Valery N. Khabashesku, Oleg A. Mazyar
  • Publication number: 20190284466
    Abstract: A method of providing an optimal surfactant blend to improve waterflood efficiency comprises selecting candidate surfactant blends based on one or more of the following: a reservoir condition; information of a crude oil; information of an injection fluid; or information of a formation fluid, each candidate surfactant blends comprising at least two surfactants, one surfactant having a higher relative affinity for the crude oil than for the injection fluid and at least one surfactant having a higher affinity for the injection fluid than for the crude oil; evaluating phase behavior of the candidate surfactant blends to select surfactant blends that form a Winsor III system with the crude oil and the injection fluid at a reservoir temperature; and evaluating the selected surfactant blends in a porous media to select an optimal surfactant blend which achieves at least an additional 10% crude oil recovery after waterflood.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 19, 2019
    Applicant: Baker Hughes, a GE company, LLC
    Inventors: Lirio Quintero, Henry Nguyen, Oleksandr V. Kuznetsov
  • Patent number: 10408027
    Abstract: A method of extracting hydrocarbons from a subterranean formation comprises forming a suspension comprising reactive particles and a carrier fluid. The suspension is introduced into a subterranean formation containing a hydrocarbon material. At least a portion of the reactive particles are exothermically reacted with at least one other material within the subterranean formation to form a treated hydrocarbon material from the hydrocarbon material. The treated hydrocarbon material is extracted from the subterranean formation. An additional method of extracting hydrocarbons from a subterranean formation, and a method of treating a hydrocarbon material within a subterranean formation are also described.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: September 10, 2019
    Assignee: Baker Hughes, a GE Company, LLC
    Inventors: Oleg A. Mazyar, Valery N. Khabashesku, Oleksandr V. Kuznetsov, Gaurav Agrawal, Michael H. Johnson
  • Patent number: 10323463
    Abstract: Methods of making cutting elements for earth-boring tools may involve placing a powdered mixture into a mold. The powdered mixture may include a plurality of core particles comprising a diamond material and having an average diameter of between 1 ?m and 500 ?m, a coating material adhered to and covering at least a portion of an outer surface of each core particle of the plurality of core particles, the coating material comprising an amine terminated group, and a plurality of nanoparticles selected from the group consisting of carbon nanotubes, nanographite, nanographene, non-diamond carbon allotropes, surface modified nanodiamond, nanoscale particles of BeO, and nanoscale particles comprising a Group VIIIA element adhered to the coating material. The powdered mixture may be sintered to form a polycrystalline diamond table. The polycrystalline diamond table may be attached to a substrate.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: June 18, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Soma Chakraborty, Oleksandr V. Kuznetsov, Gaurav Agrawal
  • Patent number: 10259992
    Abstract: A method of extracting hydrocarbons from a subterranean formation comprises introducing a solution comprising a silicon-containing compound into the subterranean formation. The silicon-containing compound may comprise a terminal group comprising one of an alkanoate group, a fluoroalkanoate group, and a perfluoroalkanoate group, and one or more of an alkoxy group and a chlorine atom bonded to a silicon atom. The method comprises attaching the silicon-containing compound to one or more of formation surfaces of the subterranean formation to form an oleophilic surface on the one or more of the formation surfaces and the surfaces of proppant particles.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: April 16, 2019
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Valery N. Khabashesku, Oleksandr V. Kuznetsov, Michael H. Johnson
  • Publication number: 20190010382
    Abstract: A method of recovering hydrocarbons comprises introducing a suspension comprising nanoparticles to a material and contacting surfaces of the material with the suspension. After introducing the suspension comprising the nanoparticles to the material, the method further includes introducing at least one charged surfactant to the material and removing hydrocarbons from the material. Accordingly, in some embodiments, the nanoparticles may be introduced to the material prior to introduction of the surfactant to the material. Related methods of recovering hydrocarbons from a material are also disclosed.
    Type: Application
    Filed: August 30, 2018
    Publication date: January 10, 2019
    Inventors: Oleksandr V. Kuznetsov, Devesh K. Agrawal, Radhika Suresh, Oleg A. Mazyar, Valery N. Khabashesku, Qusai Darugar
  • Publication number: 20180342660
    Abstract: A thermoelectric material includes a polymer matrix and a plurality of partially coated particles dispersed within the polymer matrix. Each particle of the plurality has a discontinuous coating of metal on a carbon-based material. A method includes dispersing functionalized particles comprising a carbon-based material in a solvent; providing a metal salt in the solvent; and forming a plurality of distinct metal volumes on a surface of the functionalized particles to form partially coated particles. The distinct metal volumes are thermally insulated from other volumes of the plurality. A composition of matter includes a discontinuous coating of metal on a surface of a carbon-based material. The carbon-based material is selected from the group consisting of graphene oxide and functionalized carbon nanotubes.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 29, 2018
    Inventors: Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku