Patents by Inventor Olga I. Vassilieva

Olga I. Vassilieva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8644704
    Abstract: In accordance with an embodiment of the present disclosure a method for adaptively spacing channels of an optical network comprises determining a first desired power level of a first channel of an optical network. The method further comprises determining a second desired power level of a second channel of the optical network, the second desired power level being less than the first desired power level. Additionally, the method comprises determining a first spectral space between the first channel and one or more channels neighboring the first channel based at least on the first desired power level. The method also comprises determining a second spectral space between the second channel and one or more channels neighboring the second channel based at least on the second desired power level, the second spectral space less than the first spectral space.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: February 4, 2014
    Assignee: Fujitsu Limited
    Inventors: Olga I Vassilieva, Motoyoshi Sekiya, Martin Bouda
  • Patent number: 8543000
    Abstract: In accordance with the present disclosure a system for reducing polarization dependent loss (PDL) of an optical signal comprises a delay module coupled to one or more PDL inducing network elements of an optical network. The delay module is configured to time interleave a first polarization component with respect to a second polarization component of the optical signal. The time interleaving reduces interference caused by cross-talk components associated with the first and second polarization components and induced by the PDL of the PDL inducing elements.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: September 24, 2013
    Assignee: Fujitsu Limited
    Inventors: Olga I Vassilieva, Inwoong Kim
  • Patent number: 8543006
    Abstract: A method is provided for reducing polarization dependent loss experienced by an optical signal comprises monitoring a power level of a polarization multiplexed optical signal. The method further comprises detecting a power spike based on the monitored power. The power spike is induced by misalignment of a polarization component axis of the optical signal with a polarization dependent loss (PDL) axis of one or more network elements. The method further comprises rotating the polarization orientation of the optical signal such that the power spike is reduced.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: September 24, 2013
    Assignee: Fujitsu Limited
    Inventors: Olga I Vassilieva, Youichi Akasaka
  • Patent number: 8467690
    Abstract: Methods and systems are provided for cancellation of chromatic dispersion combined laser phase noise. A method may include measuring a differential of laser phase noise using two optical pilot signals, the pilot signals each having a different optical frequency, or using an optical carrier and a pilot signal. The method may also include determining an approximate laser phase noise present in an optical system based on the measured differential of laser phase noise. The method may further include compensating for laser phase noise based on the determined approximate laser phase noise.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: June 18, 2013
    Assignee: Fujitsu Limited
    Inventors: Inwoong Kim, Takao Naito, Olga I. Vassilieva
  • Patent number: 8401389
    Abstract: A method for compensating for optical dispersion includes receiving an optical signal at a first node of an optical network that includes a first set of channels and a second set of channels that are each configured to be received using coherent digital receivers at a second node of the optical network. Each coherent digital receiver provides electronic dispersion compensation for the received channel at the second node. The method also includes forwarding the first set of channels from the first node without performing optical dispersion compensation on those channels. Furthermore, the method includes compensating for optical dispersion in the second set of channels at the first optical node and forwarding those channels from the first node. The optical dispersion compensation on the second set of channels at the first node provides dispersion compensation in addition to the compensation provided by the associated coherent digital receivers at the second node.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: March 19, 2013
    Assignee: Fujitsu Limited
    Inventor: Olga I Vassilieva
  • Patent number: 8369442
    Abstract: A transmitter modulator that is operable to modulate signals according to multiple modulation formats includes a first modulator, a second modulator, and a polarization beam combiner. The first modulator encodes a first signal according to a first modulation format. The second modulator encodes a second signal according to a second modulation format, the first signal orthogonally polarized with respect to the second signal. The polarization beam combiner combines the first signal and the second signal for transmission.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: February 5, 2013
    Assignee: Fujitsu Limited
    Inventors: Olga I. Vassilieva, Takao Naito
  • Publication number: 20120269506
    Abstract: In accordance with an embodiment of the present disclosure a method for adaptively spacing channels of an optical network comprises determining a first desired power level of a first channel of an optical network. The method further comprises determining a second desired power level of a second channel of the optical network, the second desired power level being less than the first desired power level. Additionally, the method comprises determining a first spectral space between the first channel and one or more channels neighboring the first channel based at least on the first desired power level. The method also comprises determining a second spectral space between the second channel and one or more channels neighboring the second channel based at least on the second desired power level, the second spectral space less than the first spectral space.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Olga I. Vassilieva, Motoyoshi Sekiya, Martin Bouda
  • Patent number: 8270835
    Abstract: A method for reducing cross-phase modulation in an optical signal includes receiving an optical signal comprising a plurality of channels, wherein the information being communicated in a first set of one or more of the channels is modulated using one or more single-polarization modulation techniques and wherein the information being communicated in a second set of one or more of the channels is modulated using one or more dual-polarization modulation techniques. The method also includes splitting the optical signal into at least a first copy of the optical signal and a second copy of the optical signal and terminating the second set of channels in the first copy. Furthermore, the method includes applying a differential group delay to the second copy, the differential group delay introducing a walk-off between symbols communicated in a first polarization component of the second set of channels and the symbols of a second polarization component of the second set of channels.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: September 18, 2012
    Assignee: Fujitsu Limited
    Inventors: Kevin Croussore, Inwoong Kim, Olga I. Vassilieva
  • Publication number: 20120148232
    Abstract: In accordance with embodiments of the present disclosure, a method for compensation of noise in an optical device is provided. The method may include calculating noise present in an optical carrier signal. The method may also include generating quadrature amplitude modulation input signals, the quadrature amplitude modulation input signals each including a term for compensation of the noise based on the calculated noise. The method may further include modulating the optical carrier signal to generate a modulated optical signal based on quadrature amplitude modulation input signals.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 14, 2012
    Inventors: Inwoong Kim, Olga I. Vassilieva
  • Publication number: 20120063781
    Abstract: In accordance with the present disclosure a system for reducing polarization dependent loss (PDL) of an optical signal comprises a delay module coupled to one or more PDL inducing network elements of an optical network. The delay module is configured to time interleave a first polarization component with respect to a second polarization component of the optical signal. The time interleaving reduces interference caused by cross-talk components associated with the first and second polarization components and induced by the PDL of the PDL inducing elements.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Olga I. Vassilieva, Inwoong Kim
  • Publication number: 20120063783
    Abstract: In accordance with the present disclosure a method for reducing polarization dependent loss experienced by an optical signal comprises monitoring a power level of a polarization multiplexed optical signal. The method further comprises detecting a power spike based on the monitored power. The power spike is induced by misalignment of a polarization component axis of the optical signal with a polarization dependent loss (PDL) axis of one or more network elements. The method further comprises rotating the polarization orientation of the optical signal such that the power spike is reduced.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Olga I. Vassilieva, Youichi Akasaka
  • Publication number: 20120063768
    Abstract: Methods and systems are provided for cancellation of chromatic dispersion combined laser phase noise. A method may include measuring a differential of laser phase noise using two optical pilot signals, the pilot signals each having a different optical frequency, or using an optical carrier and a pilot signal. The method may also include determining an approximate laser phase noise present in an optical system based on the measured differential of laser phase noise. The method may further include compensating for laser phase noise based on the determined approximate laser phase noise.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Inventors: Inwoong Kim, Takao Naito, Olga I. Vassilieva
  • Publication number: 20120014692
    Abstract: In one embodiment, a method for receiving optical signals includes receiving a first set of one or more signals and a second set of one or more signals, determining a block length used to process the first set of signals, and processing the first set of signals using the block length. The first set of signals and the second set of signals are separated by a guard band. The block length is based upon the width of the guard band.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 19, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Inwoong Kim, Olga I. Vassilieva
  • Patent number: 8055140
    Abstract: According to particular embodiments, reducing cross-phase modulation includes sending instructions to a phase modulation array comprising channel pixel sets that modulate phases of channels. The channel pixel sets comprise a first channel pixel set that modulates a first phase of a first channel and a second channel pixel set that modulates a second phase of a second channel that uses a phase modulation format. The first channel pixel set is instructed to modulate the first phase at a first constant phase. The second channel pixel set is instructed to modulate the second phase at a second constant phase different from the first constant phase in order to create a group delay between the first channel and the second channel.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: November 8, 2011
    Assignee: Fujitsu Limited
    Inventors: Olga I. Vassilieva, Richard L. Colter, Daniel Bihon, Paparao Palacharla
  • Publication number: 20110243557
    Abstract: A method for reducing cross-phase modulation in an optical signal includes receiving an optical signal comprising a plurality of channels, wherein the information being communicated in a first set of one or more of the channels is modulated using one or more single-polarization modulation techniques and wherein the information being communicated in a second set of one or more of the channels is modulated using one or more dual-polarization modulation techniques. The method also includes splitting the optical signal into at least a first copy of the optical signal and a second copy of the optical signal and terminating the second set of channels in the first copy. Furthermore, the method includes applying a differential group delay to the second copy, the differential group delay introducing a walk-off between symbols communicated in a first polarization component of the second set of channels and the symbols of a second polarization component of the second set of channels.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Kevin Croussore, Inwoong Kim, Olga I. Vassilieva
  • Publication number: 20110222864
    Abstract: A method for compensating for optical dispersion includes receiving an optical signal at a first node of an optical network that includes a first set of channels and a second set of channels that are each configured to be received using coherent digital receivers at a second node of the optical network. Each coherent digital receiver provides electronic dispersion compensation for the received channel at the second node. The method also includes forwarding the first set of channels from the first node without performing optical dispersion compensation on those channels. Furthermore, the method includes compensating for optical dispersion in the second set of channels at the first optical node and forwarding those channels from the first node. The optical dispersion compensation on the second set of channels at the first node provides dispersion compensation in addition to the compensation provided by the associated coherent digital receivers at the second node.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 15, 2011
    Applicant: FUJITSU LIMITED
    Inventor: Olga I. Vassilieva
  • Patent number: 7991295
    Abstract: A method is provided for dispersion compensation of an optical signal communicated in an optical network comprising a plurality of spans of low chromatic dispersion fiber. The method includes receiving an optical signal comprising a plurality of channels, where the information communicated in a first set of one or more of the channels is modulated using a first modulation technique and where the information communicated in a second set of one or more of the channels is modulated using a second modulation technique. The method also includes uniformly undercompensating for optical dispersion in the optical signal across all of the channels of the optical signal such that the accumulated dispersion in the optical signal increases with each span over which the optical signal is communicated. In particular embodiments, all of the channels of the optical signal are uniformly undercompensated in the range of approximately 60% to approximately 85% dispersion compensation for each span.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: August 2, 2011
    Assignee: Fujitsu Limited
    Inventors: Olga I. Vassilieva, Susumi Kinoshita
  • Publication number: 20110109953
    Abstract: According to particular embodiments, reducing cross-phase modulation includes sending instructions to a phase modulation array comprising channel pixel sets that modulate phases of channels. The channel pixel sets comprise a first channel pixel set that modulates a first phase of a first channel and a second channel pixel set that modulates a second phase of a second channel that uses a phase modulation format. The first channel pixel set is instructed to modulate the first phase at a first constant phase. The second channel pixel set is instructed to modulate the second phase at a second constant phase different from the first constant phase in order to create a group delay between the first channel and the second channel.
    Type: Application
    Filed: November 10, 2009
    Publication date: May 12, 2011
    Applicant: Fujitsu Limited
    Inventors: Olga I. Vassilieva, Richard L. Colter, Daniel Bihon, Paparao Palacharla
  • Publication number: 20110044689
    Abstract: A system for cross-phase-modulation-noise reduced transmission in hybrid networks includes a first, second, and third set of optical transmitters. The first set of optical transmitters transmits a set of ten gigabit per second signals. The second set of optical transmitters transmits a set of forty gigabit per second signals. The third set of optical transmitters transmits a set of one hundred gigabit per second signals. On a wavelength spectrum, the set of 10 G signals is immediately adjacent to the set of 100 G signals, and the set of 100 G signals is immediately adjacent to the set of 40 G signals. The set of 10 G signals and the set of 100 G signals are not separated by a guard band. In addition, the set of 100 G signals and the set of 40 G signals are also not separated by a guard band.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 24, 2011
    Inventors: Olga I. Vassilieva, Takao Naito
  • Patent number: 7778360
    Abstract: A system operable to demodulate a PSK-ASK encoded signal encoded according to ASK modulation and PSK modulation includes one or more inversion modulators. An inversion modulator receives an ASK-decoded signal generated according to a first signal split from the PSK-ASK encoded signal. The inversion modulator includes an inverter and an amplitude modulator. The inverter inverts the ASK-decoded signal to yield an inverted ASK-decoded signal, and the amplitude modulator modulates a second signal split from the PSK-ASK encoded signal according to the inverted ASK-decoded signal prior to PSK demodulation.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: August 17, 2010
    Assignee: Fujitsu Limited
    Inventor: Olga I. Vassilieva