Patents by Inventor Olga Kachurina

Olga Kachurina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9541545
    Abstract: The present invention comprises rugged, inexpensive, reliable, and sensitive laboratory assays of antibody-based viral neutralization activity and antibody-based viral adherence inhibition activity. The assays use inactivated, fluorescently-labeled virus, allowing the tests to be performed without extensive safety precautions. The interaction of the labeled virus with target cells is monitored using flow cytometric methods. A preferred embodiment uses simple and inexpensive flow cytometry methodologies and equipment, such as bead array readers used as simplified flow cytometers. The assays are rapid, taking no longer than a few hours and are readily conducted by a trained technician. The assays are sensitive because they use labeled viruses at low concentrations and determine neutralizing and blocking capacity of sera and antibody at low concentrations. The methods are appropriate for high-throughput screening of large panels of samples.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: January 10, 2017
    Assignee: SANOFI PASTEUR VAXDESIGN CORPORATION
    Inventors: Anatoly Kachurin, Olga Kachurina, Vaughan Wittman, Tenekua Tapia
  • Publication number: 20150111766
    Abstract: The present invention comprises rugged, inexpensive, reliable, and sensitive laboratory assays of antibody-based viral neutralization activity and antibody-based viral adherence inhibition activity. The assays use inactivated, fluorescently-labeled virus, allowing the tests to be performed without extensive safety precautions. The interaction of the labeled virus with target cells is monitored using flow cytometric methods. A preferred embodiment uses simple and inexpensive flow cytometry methodologies and equipment, such as bead array readers used as simplified flow cytometers. The assays are rapid, taking no longer than a few hours and are readily conducted by a trained technician. The assays are sensitive because they use labeled viruses at low concentrations and determine neutralizing and blocking capacity of sera and antibody at low concentrations. The methods are appropriate for high-throughput screening of large panels of samples.
    Type: Application
    Filed: June 3, 2014
    Publication date: April 23, 2015
    Applicant: SANOFI PASTEUR VAXDESIGN CORPORATION
    Inventors: Anatoly KACHURIN, Olga KACHURINA, Vaughan WITTMAN, Tenekua TAPIA
  • Patent number: 8962256
    Abstract: Hemagglutination (HA) and hemagglutination inhibition (HAI) functional assays remain important instruments of analysis of virus-cell interaction and protecting efficacy of virus-specific antibodies and sera. However, they demonstrate limited sensitivity towards many viruses, and require significant volumes of viruses, erythrocytes, sera, and antibodies. The present invention comprises new and significantly more sensitive versions of the HA and HAI assays based on observing agglutination on activated surfaces of specifically opsonized plates and ELISA plates rather than in solution. A version of the new assay that uses ELISA plates additionally allows characterizing the affinity of functional antibodies in the tested sera and fluids, which is not possible in the classical HAI assay. The methods of the present invention can also be used to improve the sensitivity of agglutination methods based on latex beads and to develop agglutination methods using target cells other than erythrocytes.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: February 24, 2015
    Assignee: Sanofi Pasteur Vaxdesign Corp.
    Inventors: Anatoly Kachurin, Vaughan Wittman, Mike N. Nguyen, Olga Kachurina, Tenekua Tapia, Vipra Dhir, Alexander Karol
  • Patent number: 8778347
    Abstract: The present invention comprises rugged, inexpensive, reliable, and sensitive laboratory assays of antibody-based viral neutralization activity and antibody-based viral adherence inhibition activity. The assays use inactivated, fluorescently-labeled virus, allowing the tests to be performed without extensive safety precautions. The interaction of the labeled virus with target cells is monitored using flow cytometric methods. A preferred embodiment uses simple and inexpensive flow cytometry methodologies and equipment, such as bead array readers used as simplified flow cytometers. The assays are rapid, taking no longer than a few hours and are readily conducted by a trained technician. The assays are sensitive because they use labeled viruses at low concentrations and determine neutralizing and blocking capacity of sera and antibody at low concentrations. The methods are appropriate for high-throughput screening of large panels of samples.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: July 15, 2014
    Assignee: Sanofi Pasteur Vaxdesign Corp.
    Inventors: Anatoly Kachurin, Olga Kachurina, Vaughan Wittman, Tenekua Tapia
  • Publication number: 20110097705
    Abstract: Hemagglutination (HA) and hemagglutination inhibition (HAI) functional assays remain important instruments of analysis of virus-cell interaction and protecting efficacy of virus-specific antibodies and sera. However, they demonstrate limited sensitivity towards many viruses, and require significant volumes of viruses, erythrocytes, sera, and antibodies. The present invention comprises new and significantly more sensitive versions of the HA and HAI assays based on observing agglutination on activated surfaces of specifically opsonized plates and ELISA plates rather than in solution. A version of the new assay that uses ELISA plates additionally allows characterizing the affinity of functional antibodies in the tested sera and fluids, which is not possible in the classical HAI assay. The methods of the present invention can also be used to improve the sensitivity of agglutination methods based on latex beads and to develop agglutination methods using target cells other than erythrocytes.
    Type: Application
    Filed: October 20, 2010
    Publication date: April 28, 2011
    Applicant: VAXDESIGN CORP.
    Inventors: Anatoly Kachurin, Vaughan Wittman, Mike N. Nguyen, Olga Kachurina, Tenekua Tapia, Vipra Dhir, Alexander Karol
  • Publication number: 20100120020
    Abstract: The present invention comprises rugged, inexpensive, reliable, and sensitive laboratory assays of antibody-based viral neutralization activity and antibody-based viral adherence inhibition activity. The assays use inactivated, fluorescently-labeled virus, allowing the tests to be performed without extensive safety precautions. The interaction of the labeled virus with target cells is monitored using flow cytometric methods. A preferred embodiment uses simple and inexpensive flow cytometry methodologies and equipment, such as bead array readers used as simplified flow cytometers. The assays are rapid, taking no longer than a few hours and are readily conducted by a trained technician. The assays are sensitive because they use labeled viruses at low concentrations and determine neutralizing and blocking capacity of sera and antibody at low concentrations. The methods are appropriate for high-throughput screening of large panels of samples.
    Type: Application
    Filed: November 11, 2009
    Publication date: May 13, 2010
    Applicant: VaxDesign Corp.
    Inventors: Anatoly KACHURIN, Olga KACHURINA, Vaughan WITTMAN, Tenekua TAPIA
  • Publication number: 20090325148
    Abstract: Hemagglutination assays and hemagglutination inhibition assays were introduced in medical and virology practice more than 60 years ago. Since then, these assays have become important tools for measuring concentrations and strengths of viral cultures, the efficacy of the anti-viral immunization, and for studying the neutralizing capacity of virus-specific antibodies. The present invention comprises an improved hemagglutination inhibition assay (HAI), with at least about a 10-fold increase in sensitivity versus the traditional the HAI, to provide more accurate measurements of components in, for example, fluids from the in vitro MIMICĀ® system when assessing the effects of anti-viral vaccines (e.g., for seasonal influenza).
    Type: Application
    Filed: June 30, 2009
    Publication date: December 31, 2009
    Inventors: Anatoly KACHURIN, Vaughan WITTMAN, Olga KACHURINA, Tenekua TAPIA
  • Publication number: 20050244505
    Abstract: The present invention directs to compositions and methods for modulating immune system. One aspect of the present invention relates to a composition comprising FADD-dependent signaling pathway modulators. Another aspect of the present invention relates to biodegradable microparticles, such as a chitosan microparticle, or PLGA/PEI microparticle, designed to deliver nucleic acids and/or proteins, such as FADD-dependent signaling pathway modulators, to boost different pathways of an immune response. Another aspect of the present invention relates to the method of making biodegradable microparticles. The further aspect of the present invention relates to the use of the chitosan and other polycationic microparticles to deliver FADD-dependent signaling pathway modulators to modulate immune system for the prevention and/or treatment infectious diseases and cancers.
    Type: Application
    Filed: December 13, 2004
    Publication date: November 3, 2005
    Inventors: Russell Higbee, Glen Barber, Anatoly Kachurin, Olga Kachurina, Heather Gappa-Fahlekamp, William Warren, Siddharth Balachandran, Emmanuel Thomas, Robert Parkhill
  • Patent number: 6749945
    Abstract: An Ormosil composite coating that provides good corrosion and abrasion resistance of the underlying substrate. The Ormosil composite coating of the present invention is entrapped with a plurality of inorganic particles of a size greater than 1 micron to produce a coating of a sufficient, desired thickness. The coating of the present invention, generally includes an ormosil composite including a plurality of entrapped inorganic particles wherein each of the plurality of inorganic particles is at least one (1) micron in its maximum dimension but not greater than 75 microns (however, a maximum dimension of 5 microns is preferred).
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: June 15, 2004
    Assignee: The Board of Regents for Oklahoma State University
    Inventors: Edward T. Knobbe, Olga Kachurina, Tammy L. Metroke
  • Patent number: 6709707
    Abstract: A process for chemical removal of organically-modified silicate (Ormosil) coatings from aluminum alloy substrates without degradation of the underlying metal. An Ormosil film is treated with a zincate solution. The zincate solution dissolves the Ormosil film and deposits a thin, easily-removed layer of zinc onto the aluminum alloy surface, which prevents base-activated dissolution of the underlying metal. The zinc layer may be removed using dilute phosphoric acid, leaving the surface of the aluminum alloy intact. Consequently, the sol-gel coating may be removed while the integrity of the aluminum alloy substrate is maintained.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: March 23, 2004
    Assignee: The Board of Regents For Oklahoma State University
    Inventors: Edward T. Knobbe, Olga Kachurina, Tammy L. Metroke
  • Publication number: 20030049382
    Abstract: A process for chemical removal of organically-modified silicate (Ormosil) coatings from aluminum alloy substrates without degradation of the underlying metal. An Ormosil film is treated with a zincate solution. The zincate solution dissolves the Ormosil film and deposits a thin, easily-removed layer of zinc onto the aluminum alloy surface, which prevents base-activated dissolution of the underlying metal. The zinc layer may be removed using dilute phosphoric acid, leaving the surface of the aluminum alloy intact. Consequently, the sol-gel coating may be removed while the integrity of the aluminum alloy substrate is maintained.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 13, 2003
    Inventors: Edward T. Knobbe, Olga Kachurina, Tammy L. Metroke
  • Publication number: 20030027011
    Abstract: The invention described herein provides an organic-inorganic multilayer coating system comprising an advanced nanostructured layer-by-layer hybrid coating for the corrosion inhibition of metals. Electrochemically-active corrosion inhibitors are adsorbed onto a layer-by-layer assembled organic-inorganic multilayer coating, preferably used in combination with a topcoat sol-gel barrier layer, to provide enhanced corrosion protection of metal substrates.
    Type: Application
    Filed: January 29, 2002
    Publication date: February 6, 2003
    Inventors: Nicholas Kotov, Edward T. Knobbe, Olga Kachurina, Tammy L. Metroke
  • Publication number: 20030012971
    Abstract: An Ormosil composite coating that provides good corrosion and abrasion resistance of the underlying substrate. The Ormosil composite coating of the present invention is entrapped with a plurality of inorganic particles of a size greater than 1 micron to produce a coating of a sufficient, desired thickness. The coating of the present invention, generally includes an ormosil composite including a plurality of entrapped inorganic particles wherein each of the plurality of inorganic particles is at least one (1) micron in its maximum dimension but not greater than 75 microns (however, a maximum dimension of 5 microns is preferred).
    Type: Application
    Filed: January 29, 2002
    Publication date: January 16, 2003
    Inventors: Edward T. Knobbe, Olga Kachurina, Tammy L. Metroke