Patents by Inventor Oliver C. Mullins

Oliver C. Mullins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120053838
    Abstract: A method for downhole fluid analysis is disclosed. The method includes positioning a downhole fluid sampling tool at first and second locations; extracting and compositionally analyzing samples of reservoir fluid while positioned at the first and second locations; comparing analysis results; and repositioning the tool to a third location depending on the results of the comparison. The compositional analysis can be performed using downhole gas chromatography and mass spectrometry systems and preferably can identify subtle non-homogeneities such as biomarkers. The fluid extraction can be performed using a focuses dual-flowline type sampling probe.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: A. Ballard Andrews, Oleg Zhdaneev, Oliver C. Mullins
  • Patent number: 8124931
    Abstract: The invention relates to a method for detecting the presence of hydrocarbons near an unmanned offshore oil platform. The method steps include monitoring reflected atmospheric and thermal radiation, detecting the presence of hydrocarbons, and generating an alert based on the presence of hydrocarbons.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: February 28, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Albert Ballard Andrews, Wei-Chuan Shih, Matthew Clayton, Oliver C. Mullins
  • Patent number: 8120357
    Abstract: A method for determining fluids in a formation. The method includes obtaining open hole measurements for a borehole in the formation; identifying points in the borehole from which to obtain pressure measurements using the open hole measurements; obtaining pressure measurements at the identified points in the borehole; applying an excess pressure technique to the pressure measurements to identify a plurality of pressure compartments in the borehole; characterizing fluid in each of the plurality of compartments; and developing a drilling plan based on characterization of fluids in each of the plurality of compartments.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: February 21, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Wicher Wichers, Chanh Cao Minh, Bei Gao, Peter Weinheber, Cosan Ayan, Oliver C. Mullins
  • Publication number: 20110284219
    Abstract: The present disclosure relates to apparatuses and methods to detect a fluid contamination level of a fluid sample. The method may comprise providing a fluid sample downhole from a subterranean formation, applying a reactant to the fluid sample to create a combined fluid, observing the combined fluid, and determining if contaminants are present within the fluid sample based upon the observing the combined fluid.
    Type: Application
    Filed: May 21, 2010
    Publication date: November 24, 2011
    Inventors: Andrew E. Pomerantz, Oliver C. Mullins
  • Patent number: 8061444
    Abstract: Methods and apparatus to form a well are disclosed. An example method involves determining a reservoir fluid map associated with at least a portion of a reservoir. The first fluid map has first fluid composition data associated therewith. The example method also involves measuring a formation fluid and determining a second fluid composition data based on the measurement. The second fluid composition data is compared with the first fluid composition data associated with the reservoir fluid map, and a well trajectory is adjusted based on the comparison.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: November 22, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Oliver C. Mullins, Julian J. Pop, Francois X. Dubost, Soraya S. Betancourt
  • Patent number: 8057752
    Abstract: A method for analyzing formation fluid in earth formation surrounding a borehole includes storing analytical reagent in a reagent container in a fluids analyzer in a formation tester and moving the formation tester, including the reagent, downhole. Reagent from the reagent container is injected into formation fluid in the flow-line to make a mixture of formation fluid and reagent. The mixture is moved through a spectral analyzer cell in the fluids analyzer to produce a time-series of optical density measurements at a plurality of wavelengths. A characteristic of formation fluid is determined by spectral analysis of the time-series of optical density measurements.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: November 15, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Torleif Torgersen, Bhavani Raghuraman, Edward Harrigan, Oliver C. Mullins, Gale Gustavson, Philip Rabbito, Ricardo Reves Vasques
  • Patent number: 8058071
    Abstract: Methods and related apparatuses and mixtures are described for detecting hydrogen sulfide in a formation fluid downhole. A detection mixture is combined with the formation fluid downhole. The detection mixture includes metal ions for reacting with hydrogen sulfide forming a metal sulfide, and charged nanoparticles sized so as to inhibit significant aggregation of the metal sulfide so as to enable spectroscopic detection of the metal sulfide downhole. The combined mixture and formation fluid is then spectroscopically interrogated so as to detect the presence of the metal sulfide thereby indicating the presence of hydrogen sulfide in the formation fluid. The mixture also includes chelating ligands for sustaining thermal endurance of the mixture under downhole conditions.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: November 15, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Li Jiang, Oliver C. Mullins, Gale H. Gustavson, Christopher Harrison, Bhavani Raghuraman, Ronald E. G. Van Hal, Jimmy Lawrence, Kosta Ladavac, Albert Ballard Andrews, Timothy Gareth John Jones, Rogerio Tadeu Ramos
  • Patent number: 8039791
    Abstract: An example method for determining a partial density of a compound in a downhole fluid may comprise exposing the downhole fluid to an electromagnetic radiation, and measuring a spectrum of radiation absorption by the downhole fluid. An absorption peak of the compound may be identified in the measured spectrum. A first parameter indicative of radiation absorption by the downhole fluid may be determined in the identified absorption peak. Second and third parameters indicative of radiation absorptions by the downhole fluid may be determined essentially out of the identified absorption peak. A weighted combination of the second and third parameters may be computed, and the partial density of the compound may be determined from a difference between the weighted combination and the first parameter.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 18, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Chengli Dong, Oliver C. Mullins, Micheal O'Keefe
  • Publication number: 20110246143
    Abstract: An improved method that performs downhole fluid analysis of the fluid properties of a reservoir of interest and that characterizes the reservoir of interest based upon such downhole fluid analysis.
    Type: Application
    Filed: April 1, 2010
    Publication date: October 6, 2011
    Inventors: Andrew E. Pomerantz, Julian Zuo, Christopher Harrison, Oliver C. Mullins
  • Patent number: 8032303
    Abstract: Methods and apparatus to determine a concentration of nitrogen in a downhole fluid are described. An example apparatus to determine a concentration of nitrogen in a downhole fluid includes a fluid measurement unit to measure a first fluid composition and a density of at least a hydrocarbon and carbon dioxide in a sample of the downhole fluid. Additionally, the example apparatus includes one or more sensors to measure at least a pressure and a temperature of the sample. Further, the example apparatus includes a processing unit to determine a first theoretical density based on at least the first fluid composition, the temperature, and the pressure the sample. Further still, the example apparatus includes an analyzer to determine a first difference between the density of at least the hydrocarbon and the carbon dioxide in the sample and the first theoretical density. The first difference is associated with a concentration of nitrogen in the sample.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: October 4, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Go Fujisawa, Chee Kin Khong, Oliver C. Mullins
  • Patent number: 7996154
    Abstract: A method and system for characterizing asphaltene gradients of a reservoir of interest and analyzing properties of the reservoir of interest based upon such asphaltene gradients. The analysis employs a correlation that relates insoluble asphaltene concentration to spectrophotometry measurement data measured at depth.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: August 9, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Youxiang (Julian) Zuo, Oliver C. Mullins, Jinglin Gao, Abdel M. Kharrat, Kentaro Indo, Michael O'Keefe, Soraya S. Betancourt, Chengli Dong, Francois Dubost
  • Patent number: 7959864
    Abstract: Methods and related apparatuses and mixtures are described for detecting hydrogen sulfide in a formation fluid downhole. A detection mixture is combined with the formation fluid downhole. The detection mixture includes metal ions for reacting with hydrogen sulfide forming a metal sulfide, and charged nanoparticles sized so as to inhibit significant aggregation of the metal sulfide so as to enable spectroscopic detection of the metal sulfide downhole. The combined mixture and formation fluid is then spectroscopically interrogated so as to detect the presence of the metal sulfide thereby indicating the presence of hydrogen sulfide in the formation fluid. The mixture also includes chelating ligands for sustaining thermal endurance of the mixture under downhole conditions.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: June 14, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Li Jiang, Oliver C. Mullins, Gale H. Gustavson, Christopher Harrison, Bhavani Raghuraman, Ronald E. G. Van Hal, Jimmy Lawrence, Kosta Ladavac, A. Ballard Andrews, Timothy Gareth John Jones, Rogerio Tadeu Ramos
  • Publication number: 20110132609
    Abstract: A formation fluid sampling tool is provided with reactants which are carried downhole and which are combined in order to generate heat energy which is applied to the formation adjacent the borehole. By applying heat energy to the formation, the formation fluids are heated, thereby increasing mobility, and fluid sampling is expedited.
    Type: Application
    Filed: January 7, 2011
    Publication date: June 9, 2011
    Applicant: Schlumberger Technology Corporation
    Inventors: Ronald E. G. Van Hal, Anthony Goodwin, Oliver C. Mullins, Peter S. Hegeman, Bhavani Raghuraman, Soraya S. Betancourt, Cosan Ayan, Ricardo Vasques, Francois Xavier Dubost, Christopher Scott Del Campo
  • Publication number: 20110111507
    Abstract: Methods and related apparatuses and mixtures are described for detecting hydrogen sulfide in a formation fluid downhole. A detection mixture is combined with the formation fluid downhole. The detection mixture includes metal ions for reacting with hydrogen sulfide forming a metal sulfide, and charged nanoparticles sized so as to inhibit significant aggregation of the metal sulfide so as to enable spectroscopic detection of the metal sulfide downhole. The combined mixture and formation fluid is then spectroscopically interrogated so as to detect the presence of the metal sulfide thereby indicating the presence of hydrogen sulfide in the formation fluid. The mixture also includes chelating ligands for sustaining thermal endurance of the mixture under downhole conditions.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 12, 2011
    Applicant: Schlumberger Technology Corporation
    Inventors: Li Jiang, Oliver C. Mullins, Gale H. Gustavson, Christopher Harrison, Bhavani Raghuraman, Ronald E.G. Van Hal, Jimmy Lawrence, Kosta Ladavac, A. Ballard Andrews, Timothy Gareth John Jones, Rogerio Tadeu Ramos
  • Publication number: 20110104809
    Abstract: Methods and related apparatuses and mixtures are described for detecting hydrogen sulfide in a formation fluid downhole. A detection mixture is combined with the formation fluid downhole. The detection mixture includes metal ions for reacting with hydrogen sulfide forming a metal sulfide, and charged nanoparticles sized so as to inhibit significant aggregation of the metal sulfide so as to enable spectroscopic detection of the metal sulfide downhole. The combined mixture and formation fluid is then spectroscopically interrogated so as to detect the presence of the metal sulfide thereby indicating the presence of hydrogen sulfide in the formation fluid. The mixture also includes chelating ligands for sustaining thermal endurance of the mixture under downhole conditions.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 5, 2011
    Applicant: Schlumberger Technology Corporation
    Inventors: Li Jiang, Oliver C. Mullins, Gale H. Gustavson, Christopher Harrison, Bhavani Raghuraman, Ronald E.G. Van Hal, Jimmy Lawrence, Kosta Ladavac, A. Ballard Andrews, Timothy Gareth John Jones, Rogerio Tadeu Ramos
  • Publication number: 20110088949
    Abstract: A method and system for characterizing formation fluids contaminated with drilling mud that compensates for the presence of such drilling mud. The operations that characterize formation fluids contaminated with drilling mud can be carried out in real-time. The operations also characterize a wide array of fluid properties of petroleum samples contaminated with drilling mud in a manner that compensates for the presence of drilling mud. The operations characterize the viscosity and density of petroleum samples contaminated with drilling mud at formation conditions in a manner that compensates for differences between formation conditions and flowline measurement conditions. The operations also derive live fluid density unaffected by contamination of mud filtrate based on a scaling coefficient dependent on measured gas-oil ratio of the formation fluid.
    Type: Application
    Filed: May 6, 2009
    Publication date: April 21, 2011
    Inventors: Youxiang (Jullan) Zuo, Dingan (Dan) Zhang, Dong Chengli, Oliver C. Mullins, Michael O'Keefe
  • Publication number: 20110061439
    Abstract: Methods of calibrating a fluid analyzer for use in a wellbore are described. An example method of generating calibration data for a fluid analyzer for use in a downhole tool involves lowering a downhole tool including a fluid analyzer to a location in a wellbore, measuring, via the fluid analyzer, a characteristic value of a calibration fluid or a vacuum while the fluid analyzer is at the location, obtaining an expected characteristic value for the calibration fluid or the vacuum at the location, and comparing the measured characteristic value to the expected characteristic value to generate a calibration value for the fluid.
    Type: Application
    Filed: July 3, 2008
    Publication date: March 17, 2011
    Inventors: Chengli Dong, Ricardo R. Vasques, Michael O'Keefe, Peter S. Hegeman, Oliver C. Mullins, Go Fujisawa, Stephane Vannuffelen, Richard Jackson, Ahmad Saputra
  • Publication number: 20110061935
    Abstract: Method of drilling a well, including one method comprising determining a first value indicative of a relative position of a geological bed boundary with respect to a drilling assembly, determining a second value indicative of an optical property of a formation fluid proximate the drilling assembly, and controlling a well trajectory based on the first and second value.
    Type: Application
    Filed: April 23, 2009
    Publication date: March 17, 2011
    Inventors: Oliver C. Mullins, Shahid A. Haq
  • Publication number: 20110042070
    Abstract: A system and method for determining at least one fluid characteristic of a downhole fluid sample using a downhole tool are provided. In one example, the method includes performing a calibration process that correlates optical and density sensor measurements of a fluid sample in a downhole tool at a plurality of pressures. The calibration process is performed while the fluid sample is not being agitated. At least one unknown value of a density calculation is determined based on the correlated optical sensor measurements and density sensor measurements. A second optical sensor measurement of the fluid sample is obtained while the fluid sample is being agitated. A density of the fluid sample is calculated based on the second optical sensor measurement and the at least one unknown value.
    Type: Application
    Filed: August 18, 2009
    Publication date: February 24, 2011
    Inventors: Kai Hsu, Kentaro Indo, Oliver C. Mullins, Peter S. Hegeman
  • Patent number: 7886825
    Abstract: A formation fluid sampling tool is provided with reactants which are carried downhole and which are combined in order to generate heat energy which is applied to the formation adjacent the borehole. By applying heat energy to the formation, the formation fluids are heated, thereby increasing mobility, and fluid sampling is expedited.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 15, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Ronald E. G. Van Hal, Anthony Goodwin, Oliver C. Mullins, Peter S. Hegeman, Bhavani Raghuraman, Soraya S. Betancourt, Cosan Ayan, Ricardo Vasques, Francois Xavier Dubost, Christopher Scott Del Campo