Patents by Inventor Oliver Häberlen

Oliver Häberlen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12094963
    Abstract: A semiconductor device is described. In one embodiment, the device includes a Group-III nitride channel layer and a Group-III nitride barrier layer on the Group-III nitride channel layer, wherein the Group-III nitride barrier layer includes a first portion and a second portion, the first portion having a thickness less than the second portion. A p-doped Group-III nitride gate layer section is arranged at least on the first portion of the Group-III nitride barrier layer and a gate contact formed on the p-doped Group-III nitride gate layer.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: September 17, 2024
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Haeberlen, Walter Rieger
  • Patent number: 12068379
    Abstract: In an embodiment, a semiconductor device is provided that includes a lateral transistor device having a source, a drain and a gate, and a monolithically integrated capacitor coupled between the gate and the drain.
    Type: Grant
    Filed: May 31, 2023
    Date of Patent: August 20, 2024
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Häberlen, Eric G. Persson, Reenu Garg
  • Publication number: 20240222488
    Abstract: A method includes providing a semiconductor body including a plurality of two-dimensional charge carrier gas channels, forming a gate fin by forming a pair of gate trenches in an upper surface of the semiconductor body, the pair of gate trenches exposing each one of two-dimensional charge carrier gas channels, providing source and drain contacts that are electrically connected to each one of the plurality of two-dimensional charge carrier gas channels, providing a gate structure that is configured to control a conductive connection between the source and drain contacts, wherein providing the gate structure includes forming a layer of doped type III-nitride semiconductor material that covers the gate fin and extends into the gate trenches, and forming a conductive gate electrode on top of the layer of doped type III-nitride semiconductor material.
    Type: Application
    Filed: February 16, 2024
    Publication date: July 4, 2024
    Inventors: Thomas Detzel, Gerhard Prechtl, Oliver Haeberlen
  • Patent number: 11929430
    Abstract: A method includes providing a semiconductor body including a plurality of two-dimensional charge carrier gas channels, forming a gate fin by forming a pair of gate trenches in an upper surface of the semiconductor body, the pair of gate trenches exposing each one of two-dimensional charge carrier gas channels, providing source and drain contacts that are electrically connected to each one of the plurality of two-dimensional charge carrier gas channels, providing a gate structure that is configured to control a conductive connection between the source and drain contacts, wherein providing the gate structure includes forming a layer of doped type III-nitride semiconductor material that covers the gate fin and extends into the gate trenches, and forming a conductive gate electrode on top of the layer of doped type III-nitride semiconductor material.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: March 12, 2024
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Detzel, Gerhard Prechtl, Oliver Haeberlen
  • Publication number: 20240072785
    Abstract: An electronic circuit and a method are disclosed. The electronic circuit includes: a first transistor device having a load path between a first load path node and a second load path node; and a clamping circuit connected to the load path of the first transistor device. The clamping circuit includes: a second transistor device having a load path connected in parallel with the load path of the first transistor device, and a control node; and a drive circuit configured to drive the second transistor device. The drive circuit includes a clamping element and a resistor connected in series between the first and second load path nodes of the first transistor device. The drive circuit is configured to drive the second transistor device dependent on a voltage across the resistor. The first transistor device and the clamping circuit are integrated in a same semiconductor die.
    Type: Application
    Filed: August 9, 2023
    Publication date: February 29, 2024
    Inventors: Adrian Finney, Oliver Blank, Gerhard Prechtl, Dirk Ahlers, Gerhard Nöbauer, Marius Aurel Bodea, Joachim Schönle, Oliver Häberlen
  • Publication number: 20240030217
    Abstract: In an embodiment, a semiconductor device is provided that includes a Group III nitride transistor device and a Schottky barrier diode integrated in a Group III nitride body. A common drain/cathode finger is arranged on the Group III nitride body. Two or more source contacts are arranged on the Group III nitride body and spaced apart in a row, the row being spaced laterally apart from, and extending substantially parallel to, the common drain/cathode finger. A gate electrode structure and one or more Schottky metal contacts are arranged on the Group III nitride body. At least one Schottky metal contact is arranged between and spaced apart from neighbouring ones of the source contacts. The gate electrode structure includes a closed ring section for each source contact that laterally surrounds that source contact. Neighbouring closed ring sections are connected by a gate connection section.
    Type: Application
    Filed: July 14, 2023
    Publication date: January 25, 2024
    Inventors: Gerhard Prechtl, Oliver Häberlen
  • Publication number: 20230317804
    Abstract: In an embodiment, a semiconductor device is provided that includes a lateral transistor device having a source, a drain and a gate, and a monolithically integrated capacitor coupled between the gate and the drain.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 5, 2023
    Inventors: Oliver Häberlen, Eric G. Persson, Reenu Garg
  • Patent number: 11721754
    Abstract: An enhancement mode Group III nitride-based transistor device includes a body having a first surface and a Group III nitride barrier layer arranged on a Group III nitride channel layer and forming a heterojunction therebetween. A first cell field includes transistor cells and an edge region. Each transistor cell includes source, gate and drain fingers extending substantially parallel to one another on the first surface in a longitudinal direction. The gate finger, arranged laterally between the source and drain fingers, includes a p-doped Group III nitride finger arranged between a metallic gate finger and the first surface. The edge region surrounds the transistor cells and includes an edge termination structure having an isolation ring and a p-doped Group III nitride runner. The isolation ring locally interrupts the heterojunction. The runner, extending transversely to the longitudinal direction, is located laterally between the isolation ring and an end of the drain finger.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: August 8, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Gerhard Prechtl, Gilberto Curatola, Oliver Haeberlen
  • Patent number: 11688777
    Abstract: In an embodiment, a semiconductor device is provided that includes a lateral transistor device having a source, a drain and a gate, and a monolithically integrated capacitor coupled between the gate and the drain.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: June 27, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Haeberlen, Eric G. Persson, Reenu Garg
  • Publication number: 20220344501
    Abstract: An enhancement mode Group III nitride-based transistor device includes a body having a first surface and a Group III nitride barrier layer arranged on a Group III nitride channel layer and forming a heterojunction therebetween. A first cell field includes transistor cells and an edge region. Each transistor cell includes source, gate and drain fingers extending substantially parallel to one another on the first surface in a longitudinal direction. The gate finger, arranged laterally between the source and drain fingers, includes a p-doped Group III nitride finger arranged between a metallic gate finger and the first surface. The edge region surrounds the transistor cells and includes an edge termination structure having an isolation ring and a p-doped Group III nitride runner. The isolation ring locally interrupts the heterojunction. The runner, extending transversely to the longitudinal direction, is located laterally between the isolation ring and an end of the drain finger.
    Type: Application
    Filed: July 7, 2022
    Publication date: October 27, 2022
    Inventors: Gerhard Prechtl, Gilberto Curatola, Oliver Haeberlen
  • Publication number: 20220271147
    Abstract: In an embodiment, a Group III nitride-based transistor device, includes a first Group III nitride barrier layer arranged on a Group III nitride channel layer, the first Group III nitride barrier layer and the Group III nitride channel layer having differing bandgaps and forming a heterojunction capable of supporting a two-dimensional charge gas. A source, a gate and a drain are on an upper surface of the first Group III nitride barrier layer. A gate recess extends from the upper surface of the first Group III nitride barrier layer into the first Group III nitride barrier layer. A p-doped Group III nitride material arranged in the gate recess has a first extension extending on the upper surface of the first Group III nitride barrier layer towards the drain. The first extension has a length ld, and 0 nm?ld?200 nm.
    Type: Application
    Filed: May 13, 2022
    Publication date: August 25, 2022
    Inventors: Clemens Ostermaier, Oliver Haeberlen, Gerhard Prechtl, Manuel Stabentheiner
  • Patent number: 11417758
    Abstract: An enhancement mode Group III nitride-based transistor device includes a body having a first surface and a Group III nitride barrier layer arranged on a Group III nitride channel layer and forming a heterojunction therebetween. A first cell field includes transistor cells and an edge region. Each transistor cell includes source, gate and drain fingers extending substantially parallel to one another on the first surface in a longitudinal direction. The gate finger, arranged laterally between the source and drain fingers, includes a p-doped Group III nitride finger arranged between a metallic gate finger and the first surface. The edge region surrounds the transistor cells and includes an edge termination structure having an isolation ring and a p-doped Group III nitride runner. The isolation ring locally interrupts the heterojunction. The runner, extending transversely to the longitudinal direction, is located laterally between the isolation ring and an end of the drain finger.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: August 16, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Gerhard Prechtl, Gilberto Curatola, Oliver Haeberlen
  • Patent number: 11349012
    Abstract: In an embodiment, a Group III nitride-based transistor device, includes a first. Group III nitride barrier layer arranged on a Group III nitride channel layer, the first Group III nitride barrier layer and the Group III nitride channel layer having differing bandgaps and forming a heterojunction capable of supporting a two-dimensional charge gas. A source, a gate and a drain are on an upper surface of the first Group III nitride barrier layer. A gate recess extends from the upper surface of the first. Group III nitride barrier layer into the first Group III nitride barrier layer. A p-doped Group III nitride material arranged in the gate recess has a first extension extending on the upper surface of the first Group III nitride barrier layer towards the drain. The first extension has a length ld, and 0 nm?ld?200 nm.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: May 31, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Clemens Ostermaier, Oliver Haeberlen, Gerhard Prechtl, Manuel Stabentheiner
  • Publication number: 20220123138
    Abstract: A method includes providing a semiconductor body including a plurality of two-dimensional charge carrier gas channels, forming a gate fin by forming a pair of gate trenches in an upper surface of the semiconductor body, the pair of gate trenches exposing each one of two-dimensional charge carrier gas channels, providing source and drain contacts that are electrically connected to each one of the plurality of two-dimensional charge carrier gas channels, providing a gate structure that is configured to control a conductive connection between the source and drain contacts, wherein providing the gate structure includes forming a layer of doped type III-nitride semiconductor material that covers the gate fin and extends into the gate trenches, and forming a conductive gate electrode on top of the layer of doped type III-nitride semiconductor material.
    Type: Application
    Filed: December 28, 2021
    Publication date: April 21, 2022
    Inventors: Thomas Detzel, Gerhard Prechtl, Oliver Haeberlen
  • Patent number: 11257941
    Abstract: A transistor device includes a gate fin that is a segment of a semiconductor body disposed between a pair of gate trenches formed in an upper surface of the semiconductor body, a plurality of two-dimensional charge carrier gas channels disposed at different vertical depths within the gate fin, source and drain contacts arranged on either side of the gate fin in a current flow direction of the gate fin, the source and drain contacts each being electrically connected to each one of the two-dimensional charge carrier gas channels, and a gate structure that is configured to control a conductive connection between the source and drain contacts. The gate structure includes a region of doped type III-nitride semiconductor material that covers the gate fin and extends into the gate trenches, and a conductive gate electrode formed over the region of doped type III-nitride semiconductor material.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: February 22, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Thomas Detzel, Gerhard Prechtl, Oliver Haeberlen
  • Publication number: 20210313462
    Abstract: A semiconductor device is described. In one embodiment, the device includes a Group-III nitride channel layer and a Group-III nitride barrier layer on the Group-III nitride channel layer, wherein the Group-III nitride barrier layer includes a first portion and a second portion, the first portion having a thickness less than the second portion. A p-doped Group-III nitride gate layer section is arranged at least on the first portion of the Group-III nitride barrier layer and a gate contact formed on the p-doped Group-III nitride gate layer.
    Type: Application
    Filed: May 11, 2021
    Publication date: October 7, 2021
    Applicant: Infineon Technologies Austria AG
    Inventors: Oliver HAEBERLEN, Walter RIEGER
  • Patent number: 11114554
    Abstract: A high-electron-mobility semiconductor device includes: a buffer region having first, second and third cross-sections forming a stepped lateral profile, the first cross-section being thicker than the third cross-section and comprising a first buried field plate disposed therein, the second cross-section interposed between the first and third cross-sections and forming oblique angles with the first and third cross-sections; and a barrier region of substantially uniform thickness extending along the stepped lateral profile of the buffer region, the barrier region being separated from the first buried field plate by a portion of the buffer region. The buffer region is formed by a first semiconductor material and the barrier region is formed by a second semiconductor material.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: September 7, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Gerhard Prechtl, Clemens Ostermaier, Oliver Häberlen
  • Publication number: 20210234028
    Abstract: A transistor device includes a gate fin that is a segment of a semiconductor body disposed between a pair of gate trenches formed in an upper surface of the semiconductor body, a plurality of two-dimensional charge carrier gas channels disposed at different vertical depths within the gate fin, source and drain contacts arranged on either side of the gate fin in a current flow direction of the gate fin, the source and drain contacts each being electrically connected to each one of the two-dimensional charge carrier gas channels, and a gate structure that is configured to control a conductive connection between the source and drain contacts. The gate structure includes a region of doped type III-nitride semiconductor material that covers the gate fin and extends into the gate trenches, and a conductive gate electrode formed over the region of doped type III-nitride semiconductor material.
    Type: Application
    Filed: January 28, 2020
    Publication date: July 29, 2021
    Inventors: Thomas Detzel, Gerhard Prechtl, Oliver Haeberlen
  • Patent number: 11069782
    Abstract: A semiconductor device includes a transistor in a semiconductor body having a main surface. The transistor includes a source region; a drain region; a body region; a drift zone; a gate electrode at the body region, the body region and the drift zone being disposed along a first direction between the source region and the drain region, and the first direction being parallel to the main surface; a field plate disposed in each of a plurality of field plate trenches, each of the field plate trenches having a longitudinal axis extending along the first direction; and a field dielectric layer between the field plate and the drift zone, a thickness of the field dielectric layer at a bottom of each of the field plate trenches gradually increases along the first direction, the thickness being measured along a depth direction of the plurality of field plate trenches.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: July 20, 2021
    Inventors: Andreas Meiser, Oliver Haeberlen
  • Patent number: 11004966
    Abstract: A semiconductor device is described. In one embodiment, the device includes a Group-III nitride channel layer and a Group-III nitride barrier layer on the Group-III nitride channel layer, wherein the Group-III nitride barrier layer includes a first portion and a second portion, the first portion having a thickness less than the second portion. A p-doped Group-III nitride gate layer section is arranged at least on the first portion of the Group-III nitride barrier layer and a gate contact formed on the p-doped Group-III nitride gate layer.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: May 11, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Haeberlen, Walter Rieger