Patents by Inventor Oliver J. Murphy

Oliver J. Murphy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6827811
    Abstract: Assembling electrochemical cell components using a bonding agent comprising aligning components of the electrochemical cell, applying a bonding agent between the components to bond the components together, placing the components within a container that is essentially a pliable bag, and drawing a vacuum within the bag, wherein the bag conforms to the shape of the components from the pressure outside the bag, thereby holding the components securely in place. The vacuum is passively maintained until the adhesive has cured and the components are securely bonded. The bonding agent used to bond the components of the electrochemical cell may be distributed to the bonding surface from distribution channels in the components. To prevent contamination with bonding agent, some areas may be treated to produce regions of preferred adhesive distribution and protected regions. Treatments may include polishing, etching, coating and providing protective grooves between the bonding surfaces and the protected regions.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: December 7, 2004
    Assignee: Lynntech, Inc.
    Inventors: Craig C. Andrews, Oliver J. Murphy
  • Patent number: 6804949
    Abstract: The present invention provides a self-replenishing liquid water source onboard an automobile for supplying liquid water to an electrolyzer, such as an on-board hydrogen generator useful for the suppression of unwanted emissions. While automobiles typically have water reservoirs resupplied by a person, the invention provides a passive means of water collection for reliable replenishment due to operations of the automobile itself. The invention provides condensate from the engine exhaust gas by cooling a region of the exhaust system using cooling fluid from the engine coolant system. The cooling fluid is circulated during a period following the engine cold start event when the heat load on the engine coolant system is low.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: October 19, 2004
    Assignees: Lynntech, Inc., The Texas A&M University System
    Inventors: Craig C. Andrews, Alan J. Cisar, Carlos Salinas, Oliver J. Murphy, A. John Appleby
  • Publication number: 20040168911
    Abstract: The present invention provides an ozone generating system that combines single-use elements or segments with an extended use fixture that is used to activate the single-use elements. One embodiment of the invention consists of a strip of proton exchange membrane (PEM) having the ozone producing catalyst applied directly onto one side of membrane. Optionally, the application of this catalyst may be divided into segments or patches, wherein each segment represents the limited-use portion of the ozone generator. Each segment may be advanced into a fixture that provides the balance of the electrochemical system required for operation of the ozone generator. This balance of system may include additional subsystems, with a power supply, water source, electrical contacts, electronic controllers, sensors and feedback components, being typical examples.
    Type: Application
    Filed: March 2, 2004
    Publication date: September 2, 2004
    Inventors: Craig Andrews, Oliver J. Murphy
  • Publication number: 20040161655
    Abstract: A method for assembling electrochemical cells for monopolar arrays or bipolar stacks using an adhesive to bond and seal the interfaces of the stack components. Adhesives may bond and seal the components of an electrochemical cell stack, thereby providing a much lighter assembly than those stacks using traditional assembly methods and techniques. Accordingly, no gaskets, o-rings or similar devices are required to seal between the components. The adhesive may be an adhesive type selected from types consisting of reactively cured, thermoplastic, and cured by solvent loss. The adhesive may be an epoxy having a harness (Shore A) of between about 90 and about 70, preferably about 80. The perimeters of the membrane that is part of a membrane and electrode assembly may be dimensionally stabilized by leaving the perimeter in the PFSP form, or by converting the protonated perimeter to a tetra-alkyl ammonium form or to a polyvalent cationic form.
    Type: Application
    Filed: December 4, 2003
    Publication date: August 19, 2004
    Inventors: Oliver J. Murphy, Craig Andrews, James Layton, Charles J. Greenwald, Chris Boyer
  • Publication number: 20040161653
    Abstract: A bipolar plate comprising a fluid barrier and a sealing frame formed around and overlaping the perimeter of the fluid barrier. The fluid barrier is placed in a mold and then a polymer is injected into the mold, thereby forming the sealing frame around the fluid barrier such that the sealing frame overlaps the perimeter of the fluid barrier. Because there are no surfaces to seal between the perimeter of the fluid barrier and the sealing frame, gaskets or other sealing surfaces are not required. A bipolar plate is further provided comprising a fluid barrier having the perimeter of the fluid barrier between a preformed cathode sealing frame and an anode sealing frame. The anode and cathode sealing frames are adapted to receive an overlapped portion of the perimeter of the fluid barrier. The anode and cathode sealing frames are then bonded together to form a fluid tight seal.
    Type: Application
    Filed: December 4, 2003
    Publication date: August 19, 2004
    Inventors: Craig Andrews, Chris Boyer, Oliver J. Murphy, Al Cisar, Brad Fiebig
  • Patent number: 6746580
    Abstract: The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system preferably includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: June 8, 2004
    Assignee: Lynntech International, Ltd.
    Inventors: Craig C. Andrews, Oliver J. Murphy
  • Patent number: 6733913
    Abstract: This invention is an improved fuel cell design for use at low pressure. The invention has a reduced number of component parts to reduce fabrication costs, as well as a simpler design that permits the size of the system to be reduced at the same time as performance is being improved. In the present design, an adjacent anode and cathode pair are fabricated using a common conductive element, with that conductive element serving to conduct the current from one cell to the adjacent one. This produces a small and simple system suitable for operating with gas fuels or alternatively directly with liquid fuels, such as methanol, dimethoxymethane, or trimethoxymethane. The use of these liquid fuels permits the storage of more energy in less volume while at the same time eliminating the need for handling compressed gases which further simplifies the fuel cell system.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: May 11, 2004
    Assignee: Lynntech, Inc.
    Inventors: Alan J. Cisar, Dacong Weng, Oliver J. Murphy
  • Patent number: 6733638
    Abstract: The present invention provides an ozone generating system that combines single-use elements or segments with an extended use fixture that is used to activate the single-use elements. One embodiment of the invention consists of a strip of proton exchange membrane (PEM) having the ozone producing catalyst applied directly onto one side of membrane. Optionally, the application of this catalyst may be divided into segments or patches, wherein each segment represents the limited-use portion of the ozone generator. Each segment may be advanced into a fixture that provides the balance of the electrochemical system required for operation of the ozone generator. This balance of system may include additional subsystems, with a power supply, water source, electrical contacts, electronic controllers, sensors and feedback components, being typical examples.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: May 11, 2004
    Assignee: Lynntech, Inc.
    Inventors: Craig C. Andrews, Oliver J. Murphy
  • Patent number: 6712951
    Abstract: An ozone generator which operates at constant pressures to produce a continuous flow of ozone in an oxygen stream having from 10% to 18% by weight of ozone. The ozone generator includes one or more electrolytic cells comprising an anode/anode flow field, a cathode/cathode flow field, and a proton exchange medium for maintaining the separation of ozone and oxygen from hydrogen. The ozone generator also has an anode reservoir which vents oxygen and ozone and a cathode reservoir which vents hydrogen. The anode reservoir can be filled from the cathode reservoir while continuing to produce ozone. The ozone generator is readily configured for self-control using a system controller programmed to operate the anode reservoir at a constant pressure.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: March 30, 2004
    Assignee: Lynntech International, Ltd.
    Inventors: Craig C. Andrews, Oliver J. Murphy
  • Patent number: 6712950
    Abstract: A method for electrochemical synthesis of ammonia gas comprising providing an electrolyte between an anode and a cathode, providing hydrogen gas to the anode, oxidizing negatively charged nitrogen-containing species present in the electrolyte at the anode to form an adsorbed nitrogen species, and reacting the hydrogen with the adsorbed nitrogen species to form ammonia. Preferably, the hydrogen gas is provided to the anode by passing the hydrogen gas through a porous anode substrate. It is also preferred to produce the negatively charged nitrogen-containing species in the electrolyte by reducing nitrogen gas at the cathode. However, the negatively charged nitrogen-containing species may also be provided by supplying a nitrogen-containing salt, such as lithium nitride, into the molten salt electrolyte mixture in a sufficient amount to provide some or all of the nitrogen consumed in the production of ammonia.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: March 30, 2004
    Assignee: Lynntech, Inc.
    Inventors: Adrian Denvir, Oliver J. Murphy, Alan Cisar, Priscilla Robertson, Kyle Uselton
  • Patent number: 6698389
    Abstract: The present invention provides a method and apparatus for chemically heating one or more components of, or intake air flowing to, an internal combustion engine by feeding hydrogen to a catalyst. In accordance with the invention, condensation of fuels on cold engine cylinder walls during and after cold start-ups is prevented, thereby reducing wear on the engine. The invention also provides a method and apparatus for reducing pollutants commonly occurring during cold start-up of combustion engines by heating components of, or intake air flowing to, a combustion engine, in order to quickly warm the engine and its catalytic converter to operating temperatures. Preferably, the hydrogen is supplied from an electrolyzer or other on-board source of hydrogen and the hydrogen and a source of oxygen are provided to the catalyst resulting in exothermic oxidation of hydrogen to heat the air intake or other components of the engine.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: March 2, 2004
    Assignee: Lynntech, Inc.
    Inventors: Craig C. Andrews, Oliver J. Murphy
  • Publication number: 20030232233
    Abstract: An electrochemical cell comprising a plurality of electrochemical cell components having at least one opening extending therethrough. At least one filament extends through the at least one opening and has two ends with first and second securing members coupled to the two ends. A biasing member is disposed to put the at least one filament in tension between the securing members and to put the plurality of electrochemical cell components in compression. The filament is preferably electronically insulating and preferably does not transmit torsional forces. The filament extends through the at least one opening at least one time and may loop around a securing member any number of times. The filament may have a finite cut length or may form a continuous filament loop.
    Type: Application
    Filed: May 27, 2003
    Publication date: December 18, 2003
    Inventors: Craig C. Andrews, Rattaya Chow Yalamanchili, Oliver J. Murphy
  • Publication number: 20030232234
    Abstract: A bipolar assembly for use in electrochemical cell stacks, especially stacks operated at low pressure. The bipolar assembly is lightweight and provides a “post-type” flow field that operates with a low pressure drop. The bipolar assembly comprises a gas barrier having an array of electronically conducting posts disposed approximately perpendicular to the gas barrier. Each end of the posts is in electrical communication with the surface of an electrode. Because the bipolar assembly separates a cathode from an anode, the posts contact an anode electrode on one end and a cathode electrode on the other end. The posts provide current conduction through the stack as well as provide the flow fields for the electrochemical reactants. Optionally, the bipolar assembly may contain cooling fluid channels formed by adding additional gas barriers to the bipolar assembly. The space between the gas barriers form a channel through which cooling fluids may be circulated.
    Type: Application
    Filed: May 30, 2003
    Publication date: December 18, 2003
    Inventors: Alan J. Cisar, Craig C. Andrews, Charles J. Greenwald, Oliver J. Murphy, Chris Boyer, Rattaya Yalamanchili, Carlos E. Salinas
  • Publication number: 20030209447
    Abstract: The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The system may be configured to operate passively with no moving parts or in a self-pressurizing manner with the inclusion of a pressure controlling device or valve in the gas outlet of the anode reservoir. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.
    Type: Application
    Filed: March 19, 2003
    Publication date: November 13, 2003
    Applicant: Lynntech International, Ltd.
    Inventors: Craig C. Andrews, Oliver J. Murphy
  • Patent number: 6620210
    Abstract: Methods of using ozone have been developed which sterilize instruments and medical wastes, oxidize organics found in wastewater, clean laundry, break down contaminants in soil into a form more readily digested by microbes, kill microorganisms present in food products, and destroy toxins present in food products. The preferred methods for killing microorganisms and destroying toxins use pressurized, humidified, and concentrated ozone produced by an electrochemical cell.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: September 16, 2003
    Assignee: Lynntech, Inc.
    Inventors: Oliver J. Murphy, G. Duncan Hitchens
  • Publication number: 20030164305
    Abstract: A method for electrochemical synthesis of ammonia gas comprising providing an electrolyte between an anode and a cathode, providing hydrogen gas to the anode, oxidizing negatively charged nitrogen-containing species present in the electrolyte at the anode to form an adsorbed nitrogen species, and reacting the hydrogen with the adsorbed nitrogen species to form ammonia. Preferably, the hydrogen gas is provided to the anode by passing the hydrogen gas through a porous anode substrate. It is also preferred to produce the negatively charged nitrogen-containing species in the electrolyte by reducing nitrogen gas at the cathode. However, the negatively charged nitrogen-containing species may also be provided by supplying a nitrogen-containing salt, such as lithium nitride, into the molten salt electrolyte mixture in a sufficient amount to provide some or all of the nitrogen consumed in the production of ammonia.
    Type: Application
    Filed: March 4, 2002
    Publication date: September 4, 2003
    Inventors: Adrian Denvir, Oliver J. Murphy, Alan Cisar, Priscilla Robertson, Kyle Uselton
  • Publication number: 20030164292
    Abstract: A method for electrochemical synthesis of ammonia gas comprising providing an electrolyte between an anode and a cathode, providing hydrogen gas to the anode, oxidizing negatively charged nitrogen-containing species present in the electrolyte at the anode to form an adsorbed nitrogen species, and reacting the hydrogen with the adsorbed nitrogen species to form ammonia. Preferably, the hydrogen gas is provided to the anode by passing the hydrogen gas through a porous anode substrate. It is also preferred to produce the negatively charged nitrogen-containing species in the electrolyte by reducing nitrogen gas at the cathode. However, the negatively charged nitrogen-containing species may also be provided by supplying a nitrogen-containing salt, such as lithium nitride, into the molten salt electrolyte mixture in a sufficient amount to provide some or all of the nitrogen consumed in the production of ammonia.
    Type: Application
    Filed: March 4, 2002
    Publication date: September 4, 2003
    Inventors: Andrian J. Denvir, Oliver J. Murphy, Alan J. Cisar, Priscilla Robertson, Kyle Uselton
  • Publication number: 20030145942
    Abstract: Assembling electrochemical cell components using a bonding agent comprising aligning components of the electrochemical cell, applying a bonding agent between the components to bond the components together, placing the components within a container that is essentially a pliable bag, and drawing a vacuum within the bag, wherein the bag conforms to the shape of the components from the pressure outside the bag, thereby holding the components securely in place. The vacuum is passively maintained until the adhesive has cured and the components are securely bonded. The bonding agent used to bond the components of the electrochemical cell may be distributed to the bonding surface from distribution channels in the components. To prevent contamination with bonding agent, some areas may be treated to produce regions of preferred adhesive distribution and protected regions. Treatments may include polishing, etching, coating and providing protective grooves between the bonding surfaces and the protected regions.
    Type: Application
    Filed: February 7, 2002
    Publication date: August 7, 2003
    Inventors: Craig C. Andrews, Oliver J. Murphy
  • Patent number: 6602631
    Abstract: The invention provides a method for preparing subassemblies for an electrochemical cell or a stack of electrochemical cells, particularly a stack of fuel cells for the direct generation of electricity. The method includes bonding together two or more electrochemical cell components, such as plates, frames, flow fields, shims, gaskets, membranes and the like, to form subassemblies used to make an electrochemical cell stack. The bonding can be accomplished using either polymeric bonds (i.e., adhesives) where polymer and/or metal components are involved or metallurgical bonds (i.e., solder) where metal components are involved. The bonding provides tightly sealed cells and lower electronic contact resistances between components.
    Type: Grant
    Filed: January 26, 1999
    Date of Patent: August 5, 2003
    Assignee: Lynntech Power Systems, Ltd.
    Inventors: Alan J. Cisar, Oliver J. Murphy, Eric T. Clarke
  • Publication number: 20030124411
    Abstract: The invention provides for reducing the number of parts and the number of interfaces found in certain types of chemical reactors, particularly in electrochemical reactors, and especially in the type or reactor known as a fuel cell or fuel cell stack. This reduction comes from the use of a unified structure that combines the functions normally carried out by several components in the unit, particularly by combining the functions of the gas distribution structure and the gas diffusion structure, the gas distribution structure and the gas barrier structure, or all three structures into a single, unitary, metallic part. This offers the advantages of simplified design, better performance, and lighter weight.
    Type: Application
    Filed: October 17, 2002
    Publication date: July 3, 2003
    Applicant: Lynntech, Inc.
    Inventors: Alan J. Cisar, Oliver J. Murphy, King-Tsai Jeng, Carlos Salinas, Stan Simpson, Dacong Weng, Homayoun Moaddel