Patents by Inventor Oliver Nentwich

Oliver Nentwich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240076720
    Abstract: Provided herein are methods, systems, and compositions for determining a base in a polynucleotide. In various aspects, the methods, systems, and compositions presented herein are useful for performing 4-base, 5-base, or 6-base sequencing of polynucleotide molecules, for example, from liquid biopsy samples or wherein the base is a low frequency mutation.
    Type: Application
    Filed: February 9, 2023
    Publication date: March 7, 2024
    Inventors: Shankar BALASUBRAMANIAN, Jens FULLGRABE, Walraj Singh GOSAL, Joanna Dawn HOLBROOK, Sidong LIU, David MORLEY, Oliver NENTWICH, Tobias OST, Michael STEWARD, Albert VILELLA, Nicolas James WALKER, Shirong YU, Helen Rachel BIGNELL, Rita Santo SAN-BENTO
  • Patent number: 11872554
    Abstract: A microfluidic device includes an inlet port configured to receive a sample, a first reaction chamber fluidically coupled to the inlet port, a first pump fluidically coupled to the inlet port, a second pump fluidically coupled to a mixing chamber, a metering channel fluidically coupled to the first reaction chamber and to the mixing chamber, and one or more second reaction chambers fluidically coupled to the mixing chamber. The first pump is configured to move fluid from the inlet port to the first reaction chamber and from the first pump to the inlet port. The second pump is configured to move fluid from the second pump to the mixing chamber, from the first reaction chamber to the mixing chamber, and from the mixing chamber to the one or more second reaction chambers.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: January 16, 2024
    Assignee: ABBOTT DIAGNOSTICS SCARBOROUGH, INC.
    Inventors: Alexander Schenk zu Schweinsberg, Austin Matthew Derfus, Justin Davidson, Karthikeyan Kumaravadivelu, Maulik Vinod Patel, Olaf Piepenburg, Catherine Jean Greenwood, Oliver Nentwich
  • Patent number: 11608518
    Abstract: Provided herein are methods, systems, and compositions for determining a base in a polynucleotide. In various aspects, the methods, systems, and compositions presented herein are useful for performing 4-base, 5-base, or 6-base sequencing of polynucleotide molecules, for example, from liquid biopsy samples or wherein the base is a low frequency mutation.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: March 21, 2023
    Assignee: Cambridge Epigenetix Limited
    Inventors: Shankar Balasubramanian, Jens Fullgrabe, Walraj Singh Gosal, Joanna Dawn Holbrook, Sidong Liu, David Morley, Oliver Nentwich, Tobias Ost, Michael Steward, Albert Vilella, Nicolas James Walker, Shirong Yu, Helen Rachel Bignell, Rita Santo San-Bento
  • Publication number: 20220298551
    Abstract: Provided herein are methods, systems, and compositions for determining a base in a polynucleotide. In various aspects, the methods, systems, and compositions presented herein are useful for performing 4-base, 5-base, or 6-base sequencing of polynucleotide molecules, for example, from liquid biopsy samples or wherein the base is a low frequency mutation.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 22, 2022
    Inventors: Shankar BALASUBRAMANIAN, Jens FULLGRABE, Walraj Singh GOSAL, Joanna Dawn HOLBROOK, Sidong LIU, David MORLEY, Oliver NENTWICH, Tobias OST, Michael STEWARD, Albert VILELLA, Nicolas James WALKER, Shirong YU, Helen Rachel BIGNELL, Rita Santo SAN-BENTO
  • Publication number: 20220290215
    Abstract: Provided herein are methods, systems, and compositions for determining a base in a polynucleotide. In various aspects, the methods, systems, and compositions presented herein are useful for performing 4-base, 5-base, or 6-base sequencing of polynucleotide molecules, for example, from liquid biopsy samples or wherein the base is a low frequency mutation.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 15, 2022
    Inventors: Shankar BALASUBRAMANIAN, Jens FULLGRABE, Walraj Singh GOSAL, Joanna Dawn HOLBROOK, Sidong LIU, David MORLEY, Oliver NENTWICH, Tobias OST, Michael STEWARD, Albert VILELLA, Nicolas James WALKER, Shirong YU, Helen Rachel BIGNELL, Rita Santo SAN-BENTO
  • Publication number: 20200391209
    Abstract: A microfluidic device includes an inlet port configured to receive a sample, a first reaction chamber fluidically coupled to the inlet port, a first pump fluidically coupled to the inlet port, a second pump fluidically coupled to a mixing chamber, a metering channel fluidically coupled to the first reaction chamber and to the mixing chamber, and one or more second reaction chambers fluidically coupled to the mixing chamber. The first pump is configured to move fluid from the inlet port to the first reaction chamber and from the first pump to the inlet port. The second pump is configured to move fluid from the second pump to the mixing chamber, from the first reaction chamber to the mixing chamber, and from the mixing chamber to the one or more second reaction chambers.
    Type: Application
    Filed: March 9, 2020
    Publication date: December 17, 2020
    Inventors: Alexander Schenk zu Schweinsberg, Austin Matthew Derfus, Justin Davidson, Karthikeyan Kumaravadivelu, Maulik Vinod Patel, Olaf Piepenburg, Catherine Jean Greenwood, Oliver Nentwich
  • Publication number: 20200232050
    Abstract: A flu assay system including a sample module, a microfluidic nucleic acid amplification device, and an analyzer to facilitate fully automated nested recombinase polymerase amplification (RPA) on a sample delivered to the nucleic acid amplification device via the sample module. The assay includes providing a sample to a microfluidic device, and amplifying a target polynucleotide sequence in the sample. Amplifying the target polynucleotide sequence includes performing a first round of amplification on the sample to yield a first amplification product, and performing a second round of amplification on the first amplification product to yield a second amplification product. The second amplification product includes a smaller sequence completely contained within the first amplification product produced during the first round of amplification.
    Type: Application
    Filed: March 3, 2017
    Publication date: July 23, 2020
    Inventors: Murray John Whyte, Niall A. Armes, Olaf Piepenburg, Catherine Jean Greenwood, Oliver Nentwich
  • Patent number: 10632464
    Abstract: A microfluidic device includes an inlet port configured to receive a sample, a first reaction chamber fluidically coupled to the inlet port, a first pump fluidically coupled to the inlet port, a second pump fluidically coupled to a mixing chamber, a metering channel fluidically coupled to the first reaction chamber and to the mixing chamber, and one or more second reaction chambers fluidically coupled to the mixing chamber. The first pump is configured to move fluid from the inlet port to the first reaction chamber and from the first pump to the inlet port. The second pump is configured to move fluid from the second pump to the mixing chamber, from the first reaction chamber to the mixing chamber, and from the mixing chamber to the one or more second reaction chambers.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: April 28, 2020
    Assignee: ALERE SAN DIEGO, INC.
    Inventors: Alexander Schenk zu Schweinsberg, Austin Matthew Derfus, Justin Davidson, Karthikeyan Kumaravadivelu, Maulik Vinod Patel, Olaf Piepenburg, Catherine Jean Greenwood, Oliver Nentwich
  • Publication number: 20180243739
    Abstract: A microfluidic device includes an inlet port configured to receive a sample, a first reaction chamber fluidically coupled to the inlet port, a first pump fluidically coupled to the inlet port, a second pump fluidically coupled to a mixing chamber, a metering channel fluidically coupled to the first reaction chamber and to the mixing chamber, and one or more second reaction chambers fluidically coupled to the mixing chamber. The first pump is configured to move fluid from the inlet port to the first reaction chamber and from the first pump to the inlet port. The second pump is configured to move fluid from the second pump to the mixing chamber, from the first reaction chamber to the mixing chamber, and from the mixing chamber to the one or more second reaction chambers.
    Type: Application
    Filed: February 27, 2018
    Publication date: August 30, 2018
    Inventors: Alexander Schenk zu Schweinsberg, Austin Matthew Derfus, Justin Davidson, Karthikeyan Kumaravadivelu, Maulik Vinod Patel, Niall A. Armes, Olaf Piepenburg, Catherine Jean Greenwood, Oliver Nentwich