Patents by Inventor Oliver Schoor

Oliver Schoor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240294602
    Abstract: A method of treating a patient who has hepatocellular carcinoma (HCC), colorectal carcinoma (CRC), glioblastoma (GB), gastric cancer (GC), esophageal cancer, NSCLC, pancreatic cancer (PC), renal cell carcinoma (RCC), benign prostate hyperplasia (BPH), prostate cancer (PCA), ovarian cancer (OC), melanoma, breast cancer (BRCA), CLL, Merkel cell carcinoma (MCC), SCLC, Non-Hodgkin lymphoma (NHL), AML, gallbladder cancer and cholangiocarcinoma (GBC, CCC), urinary bladder cancer (UBC), and uterine cancer (UEC) includes administering to said patient a composition containing a population of activated T cells that selectively recognize cells in the patient that aberrantly express a peptide.
    Type: Application
    Filed: April 26, 2024
    Publication date: September 5, 2024
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Lea STEVERMANN
  • Patent number: 12076381
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: September 3, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Phillip Mueller, Julia Leibold, Valentina Goldfinger
  • Patent number: 12076379
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: September 3, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Colette Song, Linus Backert, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Publication number: 20240285738
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: April 26, 2024
    Publication date: August 29, 2024
    Inventors: Andrea MAHR, Toni WEINSCHENK, Anita WIEBE, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH
  • Patent number: 12071458
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: August 27, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Helen Hoerzer, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Publication number: 20240279306
    Abstract: The invention relates to a peptide comprising an amino acid sequence selected from the group consisting of (i) SEQ ID NO: 1 to SEQ ID NO: 113, and (ii) a variant sequence thereof which maintains capacity to bind to MHC molecule(s) and/or induce T cells cross-reacting with said variant peptide, or a pharmaceutically acceptable salt thereof.
    Type: Application
    Filed: January 4, 2024
    Publication date: August 22, 2024
    Inventors: Jens HUKELMANN, Heiko SCHUSTER, Lena WULLKOPF, Christoph SCHRAEDER, Jens FRITSCHE, Daniel Johannes KOWALEWSKI, Michael ROEMER, Oliver SCHOOR
  • Patent number: 12065471
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: August 20, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Colette Song, Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Publication number: 20240269183
    Abstract: The invention relates to a peptide comprising an amino acid sequence selected from the group consisting of (i) SEQ ID NO: 1 to SEQ ID NO: 216, and (ii) a variant sequence thereof which maintains capacity to bind to MHC molecule(s) and/or induce T cells cross-reacting with said variant peptide, or a pharmaceutically acceptable salt thereof.
    Type: Application
    Filed: March 15, 2024
    Publication date: August 15, 2024
    Inventors: Ricarda HANNEN, Jens HUKELMANN, Florian KOEHLER, Daniel Johannes KOWALEWSKI, Heiko SCHUSTER, Oliver SCHOOR, Michael ROEMER, Chih-Chiang TSOU, Jens FRITSCHE
  • Publication number: 20240269184
    Abstract: The invention relates to a peptide comprising an amino acid sequence selected from the group consisting of (i) SEQ ID NO: 1 to SEQ ID NO: 216, and (ii) a variant sequence thereof which maintains capacity to bind to MHC molecule(s) and/or induce T cells cross-reacting with said variant peptide, or a pharmaceutically acceptable salt thereof.
    Type: Application
    Filed: March 15, 2024
    Publication date: August 15, 2024
    Inventors: Ricarda HANNEN, Jens HUKELMANN, Florian KOEHLER, Daniel Johannes KOWALEWSKI, Heiko SCHUSTER, Oliver SCHOOR, Michael ROEMER, Chih-Chiang TSOU, Jens FRITSCHE
  • Patent number: 12060399
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: August 13, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Heiko Schuster, Annika Sonntag, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh, Colette Song
  • Patent number: 12060406
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: August 13, 2024
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Lea Stevermann
  • Patent number: 12060400
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: January 30, 2023
    Date of Patent: August 13, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Colette Song, Franziska Hoffgaard, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Patent number: 12059458
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: August 13, 2024
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Colette Song
  • Publication number: 20240254191
    Abstract: The invention relates to a peptide comprising an amino acid sequence selected from the group consisting of (i) SEQ ID NO: 1 to SEQ ID NO: 113, and (ii) a variant sequence thereof which maintains capacity to bind to MHC molecule(s) and/or induce T cells cross-reacting with said variant peptide, or a pharmaceutically acceptable salt thereof.
    Type: Application
    Filed: February 6, 2024
    Publication date: August 1, 2024
    Inventors: Jens HUKELMANN, Heiko SCHUSTER, Lena WULLKOPF, Christoph SCHRAEDER, Jens FRITSCHE, Daniel Johannes KOWALEWSKI, Michael ROEMER, Oliver SCHOOR
  • Publication number: 20240247045
    Abstract: The invention relates to a peptide comprising an amino acid sequence selected from the group consisting of (i) SEQ ID NO: 1 to SEQ ID NO: 113, and (ii) a variant sequence thereof which maintains capacity to bind to MHC molecule(s) and/or induce T cells cross-reacting with said variant peptide, or a pharmaceutically acceptable salt thereof.
    Type: Application
    Filed: February 6, 2024
    Publication date: July 25, 2024
    Inventors: Jens HUKELMANN, Heiko SCHUSTER, Lena WULLKOPF, Christoph SCHRAEDER, Jens FRITSCHE, Daniel Johannes KOWALEWSKI, Michael ROEMER, Oliver SCHOOR
  • Publication number: 20240247044
    Abstract: The invention relates to a peptide comprising an amino acid sequence selected from the group consisting of (i) SEQ ID NO: 1 to SEQ ID NO: 113, and (ii) a variant sequence thereof which maintains capacity to bind to MHC molecule(s) and/or induce T cells cross-reacting with said variant peptide, or a pharmaceutically acceptable salt thereof.
    Type: Application
    Filed: January 19, 2024
    Publication date: July 25, 2024
    Inventors: Jens HUKELMANN, Heiko SCHUSTER, Lena WULLKOPF, Christoph SCHRAEDER, Jens FRITSCHE, Daniel Johannes KOWALEWSKI, Michael ROEMER, Oliver SCHOOR
  • Publication number: 20240245723
    Abstract: The invention relates to a peptide comprising an amino acid sequence selected from the group consisting of (i) SEQ ID NO: 1 to SEQ ID NO: 216, and (ii) a variant sequence thereof which maintains capacity to bind to MHC molecule(s) and/or induce T cells cross-reacting with said variant peptide, or a pharmaceutically acceptable salt thereof.
    Type: Application
    Filed: February 23, 2024
    Publication date: July 25, 2024
    Inventors: Ricarda HANNEN, Jens HUKELMANN, Florian KOEHLER, Daniel Johannes KOWALEWSKI, Heiko SCHUSTER, Oliver SCHOOR, Michael ROEMER, Chih-Chiang TSOU, Jens FRITSCHE
  • Publication number: 20240239867
    Abstract: The invention relates to a peptide comprising an amino acid sequence selected from the group consisting of (i) SEQ ID NO: 1 to SEQ ID NO: 113, and (ii) a variant sequence thereof which maintains capacity to bind to MHC molecule(s) and/or induce T cells cross-reacting with said variant peptide, or a pharmaceutically acceptable salt thereof.
    Type: Application
    Filed: February 6, 2024
    Publication date: July 18, 2024
    Inventors: Jens HUKELMANN, Heiko SCHUSTER, Lena WULLKOPF, Christoph SCHRAEDER, Jens FRITSCHE, Daniel Johannes KOWALEWSKI, Michael ROEMER, Oliver SCHOOR
  • Publication number: 20240239865
    Abstract: The invention relates to a peptide comprising an amino acid sequence selected from the group consisting of (i) SEQ ID NO: 1 to SEQ ID NO: 113, and (ii) a variant sequence thereof which maintains capacity to bind to MHC molecule(s) and/or induce T cells cross-reacting with said variant peptide, or a pharmaceutically acceptable salt thereof.
    Type: Application
    Filed: February 6, 2024
    Publication date: July 18, 2024
    Inventors: Jens HUKELMANN, Heiko SCHUSTER, Lena WULLKOPF, Christoph SCHRAEDER, Jens FRITSCHE, Daniel Johannes KOWALEWSKI, Michael ROEMER, Oliver SCHOOR
  • Publication number: 20240239866
    Abstract: The invention relates to a peptide comprising an amino acid sequence selected from the group consisting of (i) SEQ ID NO: 1 to SEQ ID NO: 113, and (ii) a variant sequence thereof which maintains capacity to bind to MHC molecule(s) and/or induce T cells cross-reacting with said variant peptide, or a pharmaceutically acceptable salt thereof.
    Type: Application
    Filed: February 6, 2024
    Publication date: July 18, 2024
    Inventors: Jens HUKELMANN, Heiko SCHUSTER, Lena WULLKOPF, Christoph SCHRAEDER, Jens FRITSCHE, Daniel Johannes KOWALEWSKI, Michael ROEMER, Oliver SCHOOR