Patents by Inventor Oliver Thilmann

Oliver Thilmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10518415
    Abstract: A packaging technique for applying an insulating pack to the housing of a battery cell. The insulating pack is formed from a self-adhesive cutout of insulating material by folding the cutout onto the sides of the housing that are to be covered. The packaging technique involves a packaging method for automatically applying an insulating pack, a battery cell including an insulating pack, a packaging station for carrying out the method, and a preparation device for preparing one or more cutouts of insulating material.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: December 31, 2019
    Assignee: KUKA Deutschland GmbH
    Inventors: Henrik Keller, Markus Finke, Anja Werling, Maximilian Heinig, Horacio Martinez, Christian Meissner, Mario Miller, Holger Moennich, Thomas Neff, Tobias Reichl, Nina Sauthoff, Osama Shahin, Oliver Thilmann, Olaf Wegener
  • Publication number: 20190099228
    Abstract: A medical manipulator includes a manipulator arm, an end effector secured to the manipulator arm and having at least one tool with a changing mass and/or mass distribution, and a manipulator controller for controlling the medical manipulator. In each control step, the manipulator controller uses a current load data matrix including the changing mass and/or mass distribution of the tool to prevent deviations from a target position or target path of the tool.
    Type: Application
    Filed: March 29, 2017
    Publication date: April 4, 2019
    Inventors: Henrik Keller, Tobias Reichl, Oliver Thilmann
  • Publication number: 20170341233
    Abstract: A packaging technique for applying an insulating pack to the housing of a battery cell. The insulating pack is formed from a self-adhesive cutout of insulating material by folding the cutout onto the sides of the housing that are to be covered. The packaging technique involves a packaging method for automatically applying an insulating pack, a battery cell including an insulating pack, a packaging station for carrying out the method, and a preparation device for preparing one or more cutouts of insulating material.
    Type: Application
    Filed: December 3, 2015
    Publication date: November 30, 2017
    Inventors: Henrik Keller, Markus Finke, Anja Groch, Maximilian Heinig, Horacio Martinez, Christian Meissner, Mario Miller, Holger Moennich, Thomas Neff, Tobias Reichl, Nina Sauthoff, Osama Shahin, Oliver Thilmann, Olaf Wegener
  • Patent number: 9750956
    Abstract: A target volume within a test object is irradiated according to an irradiation plan with a particle beam using a particle irradiation unit. The irradiation plan is determined in order to apply the energy of the particle beam in the target volume according to a predetermined dose distribution. In addition, a boundary condition is specified for at least one of the isoenergy layers and the irradiation plan is additionally specified such that the boundary condition is met for the at least one isoenergy layer. The boundary condition includes one or more of a minimum boundary energy, a maximum boundary energy, a minimum grid point number, a minimum total particle number, a minimum total dose, a minimum dose contribution to a total dose to be administered, a minimum contribution to a target function which is calculated for determining the irradiation plan, and a minimum dose compensation error.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: September 5, 2017
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Iwan Kawrakow, Johann Kim, Robert Neuhauser, Eike Rietzel, Oliver Thilmann
  • Patent number: 9370671
    Abstract: An irradiation plan for a particle irradiation unit is determined in a first run based on a specified target volume in a test object and a specified dose distribution to apply the particle beam in the target volume. The target volume includes a plurality of isoenergy layers. The irradiation plan may be determined in a second run with an additional condition that at least one of the isoenergy layers, determined according to one or more criteria, is not irradiated. Alternatively, the irradiation plan may be determined in a second run with an additional condition that only certain isoenergy layers, determined according to one or more criteria, are irradiated.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: June 21, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Johann Kim, Robert Neuhauser, Eike Rietzel, Bernd Schweizer, Oliver Thilmann
  • Publication number: 20150217135
    Abstract: An irradiation plan for a particle irradiation unit is determined in a first run based on a specified target volume in a test object and a specified dose distribution to apply the particle beam in the target volume. The target volume includes a plurality of isoenergy layers. The irradiation plan may be determined in a second run with an additional condition that at least one of the isoenergy layers, determined according to one or more criteria, is not irradiated. Alternatively, the irradiation plan may be determined in a second run with an additional condition that only certain isoenergy layers, determined according to one or more criteria, are irradiated.
    Type: Application
    Filed: June 11, 2013
    Publication date: August 6, 2015
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Johann Kim, Robert Neuhauser, Eike Rietzel, Bernd Schweizer, Oliver Thilmann
  • Publication number: 20150196781
    Abstract: A target volume within a test object is irradiated according to an irradiation plan with a particle beam using a particle irradiation unit. The irradiation plan is determined in order to apply the energy of the particle beam in the target volume according to a predetermined dose distribution. In addition, a boundary condition is specified for at least one of the isoenergy layers and the irradiation plan is additionally specified such that the boundary condition is met for the at least one isoenergy layer. The boundary condition includes one or more of a minimum boundary energy, a maximum boundary energy, a minimum grid point number, a minimum total particle number, a minimum total dose, a minimum dose contribution to a total dose to be administered, a minimum contribution to a target function which is calculated for determining the irradiation plan, and a minimum dose compensation error.
    Type: Application
    Filed: June 7, 2013
    Publication date: July 16, 2015
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Iwan Kawrakow, Johann Kim, Robert Neuhauser, Eike Rietzel, Oliver Thilmann
  • Patent number: 9033859
    Abstract: A radiotherapy treatment plan for irradiation of an object to be irradiated is determined. The object to be irradiated includes a number of irradiation areas and the object to be irradiated is irradiated with a number of beams from different directions. The method includes determining a number of total dose conditions. One of the number of total dose conditions is assigned to a respective one of the number of irradiation areas. The method further includes determining a number of single beam dose conditions. One of the single dose conditions is assigned to a respective one of the number of beams and a respective one of the number of irradiation areas. The method also includes determining irradiation parameters for the number of beams as a function of the number of total dose conditions and the number of single beam dose conditions.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: May 19, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Johannes Fieres, Oliver Thilmann
  • Publication number: 20130072743
    Abstract: A radiotherapy treatment plan for irradiation of an object to be irradiated is determined. The object to be irradiated includes a number of irradiation areas and the object to be irradiated is irradiated with a number of beams from different directions. The method includes determining a number of total dose conditions. One of the number of total dose conditions is assigned to a respective one of the number of irradiation areas. The method further includes determining a number of single beam dose conditions. One of the single dose conditions is assigned to a respective one of the number of beams and a respective one of the number of irradiation areas. The method also includes determining irradiation parameters for the number of beams as a function of the number of total dose conditions and the number of single beam dose conditions.
    Type: Application
    Filed: March 13, 2012
    Publication date: March 21, 2013
    Inventors: Johannes Fieres, Oliver Thilmann