Patents by Inventor Olivier Doaré

Olivier Doaré has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12228670
    Abstract: A communication unit includes a plurality of cascaded devices that include at least one master device and at least one slave device configured in a master-slave arrangement. The at least one master device and at least one slave device each include: a demodulator circuit configured to receive a distributed reference clock signal and re-create a system clock signal therefrom; a clock generation circuit that includes an internally-generated reference phase locked loop configured to receive the re-created system clock signal to create a master-slave clock signal; and an analog-to-digital converter, ADC, coupled to the reference phase locked loop and configured to use a same master-slave clock signal to align respective sampling instants between each ADC of the at least one master device and at least one slave device.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: February 18, 2025
    Assignee: NXP USA, Inc.
    Inventors: Olivier Doaré, Didier Salle, Cristian Pavao Moreira, Julien Orlando, Jean-Stephane Vigier, Andres Barrilado Gonzalez
  • Patent number: 11320526
    Abstract: A communication unit (300) is described that includes a plurality of cascaded devices that includes at least one master device and at least one slave device configured in a master-slave arrangement. The at least one master device comprises a modulator circuit (362) configured to: receive a system clock signal and a frame start signal; modulate the system clock signal with the frame start signal to produce a modulated master-slave clock signal (384); and transmit the modulated master-slave clock signal (384) to the at least one slave device. The at least one slave device comprises a demodulator circuit (364) configured to: receive and demodulate the modulated master-slave clock signal (384); and re-create therefrom the system clock signal (388, 385) and the frame start signal (390, 386).
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: May 3, 2022
    Assignee: NXP USA, Inc.
    Inventors: Didier Salle, Cristian Pavao Moreira, Dominique Delbecq, Olivier Doaré, Jean-Stephane Vigier, Birama Goumballa
  • Patent number: 11054513
    Abstract: A communication unit (700) is described that includes a plurality of cascaded devices that comprise at least one master device (710) and at least one slave device (720, 723) configured in a master-slave arrangement. The at least one master device (710) and at least one slave device (720, 723) each comprise: an analog-to-digital converter, ADC, (741, 742) configured to use a same re-created system clock signal (788, 790) to align respective sampling instants between each ADC (741, 742). The at least one master device (710) comprises: a clock generation circuit comprising an internally-generated reference phase locked loop circuit (708), configured to output a system clock signal (782, 784); and a modulator circuit (762) coupled to the clock generation circuit and configured to receive and distribute the system clock signal (784).
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: July 6, 2021
    Assignee: NXP USA, INC.
    Inventors: Olivier Doaré, Didier Salle, Cristian Pavao Moreira, Julien Orlando, Jean-Stephane Vigier, Andres Barrilado Gonzalez
  • Publication number: 20200003862
    Abstract: A communication unit (900) includes a plurality of cascaded devices that comprise at least one master device (910) and at least one slave device (920, 923) configured in a master-slave arrangement. The at least one master device (910) and at least one slave device (920, 923) each include: a demodulator circuit (964, 965) configured to receive a distributed reference clock signal (984) and re-create a system clock signal (988, 990) therefrom; a clock generation circuit comprising an internally-generated reference phase locked loop configured to receive the re-created system clock signal (988, 990) to create a master-slave clock signal; and an analog-to-digital converter, ADC, (941, 942) coupled to the reference phase locked loop and configured to use a same master-slave clock signal (988, 990) to align respective sampling instants between each ADC (941, 942) of the at least one master device (910) and at least one slave device (920, 923).
    Type: Application
    Filed: June 21, 2019
    Publication date: January 2, 2020
    Inventors: Olivier Doaré, Didier Salle, Cristian Pavao Moreira, Julien Orlando, Jean-Stephane Vigier, Andres Barrilado Gonzalez
  • Publication number: 20200003882
    Abstract: A communication unit (300) is described that includes a plurality of cascaded devices that includes at least one master device and at least one slave device configured in a master-slave arrangement. The at least one master device comprises a modulator circuit (362) configured to: receive a system clock signal and a frame start signal; modulate the system clock signal with the frame start signal to produce a modulated master-slave clock signal (384); and transmit the modulated master-slave clock signal (384) to the at least one slave device. The at least one slave device comprises a demodulator circuit (364) configured to: receive and demodulate the modulated master-slave clock signal (384); and re-create therefrom the system clock signal (388, 385) and the frame start signal (390, 386).
    Type: Application
    Filed: June 20, 2019
    Publication date: January 2, 2020
    Inventors: Didier Salle, Cristian Pavao Moreira, Dominique Delbecq, Olivier Doaré, Jean-Stephane Vigier, Birama Goumballa
  • Publication number: 20200003883
    Abstract: A communication unit (700) is described that includes a plurality of cascaded devices that comprise at least one master device (710) and at least one slave device (720, 723) configured in a master-slave arrangement. The at least one master device (710) and at least one slave device (720, 723) each comprise: an analog-to-digital converter, ADC, (741, 742) configured to use a same re-created system clock signal (788, 790) to align respective sampling instants between each ADC (741, 742). The at least one master device (710) comprises: a clock generation circuit comprising an internally-generated reference phase locked loop circuit (708), configured to output a system clock signal (782, 784); and a modulator circuit (762) coupled to the clock generation circuit and configured to receive and distribute the system clock signal (784).
    Type: Application
    Filed: June 21, 2019
    Publication date: January 2, 2020
    Inventors: Olivier Doaré, Didier Salle, Cristian Pavao Moreira, Julien Orlando, Jean-Stephane Vigier, Andres Barrilado Gonzalez
  • Publication number: 20170307451
    Abstract: Disclosed is a temperature sensor including a first current generator configured to generate a proportional to absolute temperature (PTAT) current, a second current generator configured to generate an inverse PTAT (IPTAT) current, the PTAT current and IPTAT current being combined to form a reference current having a sensitivity relative to temperature, a plurality of current mirrors to adjust the sensitivity and gain of the reference current, and a variable resistor to set an output calibration voltage based on the generated current.
    Type: Application
    Filed: March 20, 2017
    Publication date: October 26, 2017
    Inventors: Birama GOUMBALLA, Didier SALLE, Olivier DOARE, Cristian Pavao Moreira
  • Publication number: 20160233846
    Abstract: A calibration circuit and a method for calibrating a RC circuit, such as a high-pass filter, of an integrated circuit are provided. The calibration circuit comprises a filter arrangement having tuneable filter for filtering an input signal having a predetermined frequency. The filter comprises tuneable resistor elements, a saturation detector for detecting saturation and non-saturation of the tuneable filter by comparing a comparison voltage with the signal voltage of the filtered input signal, calibration control logic for providing incrementing and decrementing counter signals.
    Type: Application
    Filed: September 27, 2013
    Publication date: August 11, 2016
    Inventors: Cristian PAVAO-MOREIRA, Olivier DOARE, Birama GOUMBALLA
  • Publication number: 20160109559
    Abstract: An integrated circuit for a radar device comprises at least one transmitter and at least one receiver. The integrated circuit comprises: a direct digital synthesiser, DDS, configured to output a control signal; and a multiplier configured to receive a local oscillator input signal and a further input signal from the DDS. In a first mode of operation, the DDS and multiplier cooperate to generate at least one transmitter signal to be transmitted from the radar device; and in a second mode of operation the DDS and multiplier cooperate to generate at least one low frequency modulated transmitter signal to be internally routed to the at least one receiver for calibrating the at least one receiver.
    Type: Application
    Filed: March 17, 2015
    Publication date: April 21, 2016
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: DOMINIQUE DELBECQ, OLIVIER DOARE, GILLES MONTORIOL
  • Publication number: 20150219753
    Abstract: A circuitry for and a method of generating a frequency modulated radar transmitter signal are provided. The circuitry comprises a modulation signal generator for generating a modulation signal having a waveform describing a required frequency modulation of the frequency modulated radar transmitter signal and comprises a PLL circuitry for generating the frequency modulated radar transmitter signal in dependence of the modulation signal. In the PLL circuitry a controllable frequency divider controls the output frequency of the PLL circuitry in dependence of the modulation signal. The PLL circuitry further comprises a phase detector, a controllable oscillator and possibly a low pass filter. The PLL circuitry further comprises a calibration circuitry being configured to control a parameter of at least one of the phase detector and the controllable oscillator to maintain a loop gain of PLL circuitry.
    Type: Application
    Filed: July 7, 2014
    Publication date: August 6, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: DIDIER SALLE, OLIVIER DOARE, CHRISTOPHE LANDEZ