Patents by Inventor Olivier L. Tremoulet, Jr.

Olivier L. Tremoulet, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10864613
    Abstract: Waterjet systems including control valves and associated devices, systems, and methods are disclosed. A waterjet system configured in accordance with a particular embodiment includes a fluid source, a jet outlet, and a fluid conveyance extending from the fluid source to the jet outlet. The system further includes a control valve positioned along the fluid conveyance downstream from the fluid source and upstream from the jet outlet. The fluid conveyance has a first portion upstream from the control valve and a second portion downstream from the control valve. The control valve is configured to controllably reduce a pressure of fluid within the second portion of the fluid conveyance relative to a pressure of fluid within the first portion of the fluid conveyance. The first portion of the fluid conveyance is configured to accommodate movement of the jet outlet relative to the fluid source.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: December 15, 2020
    Assignee: OMAX Corporation
    Inventors: Chidambaram Raghavan, John H. Olsen, Douglas Kelley, Olivier L. Tremoulet, Jr., Andre Kashierski, Kevin A. Hay
  • Patent number: 10010999
    Abstract: Control valves for waterjet systems, control-valve actuators, waterjet systems, methods for operating waterjet systems, and associated devices, systems, and methods are disclosed. A control valve configured in accordance with a particular embodiment includes a first seat having a tapered inner surface, a second seat having a contact surface, and an elongated pin having a shaft portion and an end portion. The pin is movable relative to the first and second seats between a shutoff position and one or more throttling positions. When the pin is at the shutoff position, the end portion of the pin is in contact with the contact surface. When the pin is at the throttling position, the end portion of the pin is spaced apart from the contact surface and the tapered inner surface and the shaft portion of the pin at least partially define a throttling gap.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: July 3, 2018
    Assignee: OMAX Corporation
    Inventors: Chidambaram Raghavan, John H. Olsen, Douglas Kelley, Olivier L. Tremoulet, Jr., Rick Marks, Andre Kashierski
  • Publication number: 20170297168
    Abstract: Waterjet systems including control valves and associated devices, systems, and methods are disclosed. A waterjet system configured in accordance with a particular embodiment includes a fluid source, a jet outlet, and a fluid conveyance extending from the fluid source to the jet outlet. The system further includes a control valve positioned along the fluid conveyance downstream from the fluid source and upstream from the jet outlet. The fluid conveyance has a first portion upstream from the control valve and a second portion downstream from the control valve. The control valve is configured to controllably reduce a pressure of fluid within the second portion of the fluid conveyance relative to a pressure of fluid within the first portion of the fluid conveyance. The first portion of the fluid conveyance is configured to accommodate movement of the jet outlet relative to the fluid source.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 19, 2017
    Inventors: Chidambaram Raghavan, John H. Olsen, Douglas Kelley, Olivier L. Tremoulet, JR., Andre Kashierski, Kevin A. Hay
  • Patent number: 9610674
    Abstract: Waterjet systems including control valves and associated devices, systems, and methods are disclosed. A waterjet system configured in accordance with a particular embodiment includes a fluid source, a jet outlet, and a fluid conveyance extending from the fluid source to the jet outlet. The system further includes a control valve positioned along the fluid conveyance downstream from the fluid source and upstream from the jet outlet. The fluid conveyance has a first portion upstream from the control valve and a second portion downstream from the control valve. The control valve is configured to controllably reduce a pressure of fluid within the second portion of the fluid conveyance relative to a pressure of fluid within the first portion of the fluid conveyance. The first portion of the fluid conveyance is configured to accommodate movement of the jet outlet relative to the fluid source.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: April 4, 2017
    Assignee: OMAX Corporation
    Inventors: Chidambaram Raghavan, John H. Olsen, Douglas Kelley, Olivier L. Tremoulet, Jr., Andre Kashierski, Kevin A. Hay
  • Publication number: 20150360344
    Abstract: Control valves for waterjet systems, control-valve actuators, waterjet systems, methods for operating waterjet systems, and associated devices, systems, and methods are disclosed. A control valve configured in accordance with a particular embodiment includes a first seat having a tapered inner surface, a second seat having a contact surface, and an elongated pin having a shaft portion and an end portion. The pin is movable relative to the first and second seats between a shutoff position and one or more throttling positions. When the pin is at the shutoff position, the end portion of the pin is in contact with the contact surface. When the pin is at the throttling position, the end portion of the pin is spaced apart from the contact surface and the tapered inner surface and the shaft portion of the pin at least partially define a throttling gap.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 17, 2015
    Inventors: Chidambaram Raghavan, John H. Olsen, Douglas Kelley, Olivier L. Tremoulet, JR., Rick Marks, Andre Kashierski
  • Patent number: 9095955
    Abstract: Control valves for waterjet systems, control-valve actuators, waterjet systems, methods for operating waterjet systems, and associated devices, systems, and methods are disclosed. A control valve configured in accordance with a particular embodiment includes a first seat having a tapered inner surface, a second seat having a contact surface, and an elongated pin having a shaft portion and an end portion. The pin is movable relative to the first and second seats between a shutoff position and one or more throttling positions. When the pin is at the shutoff position, the end portion of the pin is in contact with the contact surface. When the pin is at the throttling position, the end portion of the pin is spaced apart from the contact surface and the tapered inner surface and the shaft portion of the pin at least partially define a throttling gap.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 4, 2015
    Assignee: OMAX Corporation
    Inventors: Chidambaram Raghavan, John H. Olsen, Olivier L. Tremoulet, Jr., Rick Marks, Andre Kashierski
  • Publication number: 20150151406
    Abstract: Waterjet systems including control valves and associated devices, systems, and methods are disclosed. A waterjet system configured in accordance with a particular embodiment includes a fluid source, a jet outlet, and a fluid conveyance extending from the fluid source to the jet outlet. The system further includes a control valve positioned along the fluid conveyance downstream from the fluid source and upstream from the jet outlet. The fluid conveyance has a first portion upstream from the control valve and a second portion downstream from the control valve. The control valve is configured to controllably reduce a pressure of fluid within the second portion of the fluid conveyance relative to a pressure of fluid within the first portion of the fluid conveyance. The first portion of the fluid conveyance is configured to accommodate movement of the jet outlet relative to the fluid source.
    Type: Application
    Filed: November 25, 2014
    Publication date: June 4, 2015
    Inventors: Chidambaram Raghavan, John H. Olsen, Douglas Kelley, Olivier L. Tremoulet, Jr., Andre Kashierski, Kevin A. Hay
  • Patent number: 8904912
    Abstract: Waterjet systems including control valves and associated devices, systems, and methods are disclosed. A waterjet system configured in accordance with a particular embodiment includes a fluid source, a jet outlet, and a fluid conveyance extending from the fluid source to the jet outlet. The system further includes a control valve positioned along the fluid conveyance downstream from the fluid source and upstream from the jet outlet. The fluid conveyance has a first portion upstream from the control valve and a second portion downstream from the control valve. The control valve is configured to controllably reduce a pressure of fluid within the second portion of the fluid conveyance relative to a pressure of fluid within the first portion of the fluid conveyance. The first portion of the fluid conveyance is configured to accommodate movement of the jet outlet relative to the fluid source.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: December 9, 2014
    Assignee: OMAX Corporation
    Inventors: Chidambaram Raghavan, John H. Olsen, Douglas Kelley, Olivier L. Tremoulet, Jr., Andre Kashierski, Rick Marks, Kevin A. Hay
  • Publication number: 20140087631
    Abstract: Waterjet systems including control valves and associated devices, systems, and methods are disclosed. A waterjet system configured in accordance with a particular embodiment includes a fluid source, a jet outlet, and a fluid conveyance extending from the fluid source to the jet outlet. The system further includes a control valve positioned along the fluid conveyance downstream from the fluid source and upstream from the jet outlet. The fluid conveyance has a first portion upstream from the control valve and a second portion downstream from the control valve. The control valve is configured to controllably reduce a pressure of fluid within the second portion of the fluid conveyance relative to a pressure of fluid within the first portion of the fluid conveyance. The first portion of the fluid conveyance is configured to accommodate movement of the jet outlet relative to the fluid source.
    Type: Application
    Filed: August 16, 2013
    Publication date: March 27, 2014
    Applicant: OMAX Corporation
    Inventors: Chidambaram Raghavan, John H. Olsen, Douglas Kelley, Olivier L. Tremoulet, JR., Andre Kashierski, Rick Marks, Kevin A. Hay
  • Patent number: 8430430
    Abstract: A fitting for collecting or distributing high-pressure fluid via fluid transmission lines is provided. The fitting includes a body, and a plurality of apertures formed in the body in a common plane, intersecting inside the body such that all of the apertures are in mutual fluid communication. Each of the apertures is configured to receive a threaded coupling member of a respective high-pressure transmission line. The fitting also includes first and second compression members positioned on opposing sides of the body and coupled thereto so as to exert a compressing bias to the body in an axis perpendicular to the common plane. The compression members each comprise a raised contact surface corresponding to the region of the body where the plurality of apertures meet, and through which the compressing bias is exerted. The fitting may be an elbow-fitting, a tee fitting, a cross-fitting, or some other configuration.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: April 30, 2013
    Assignee: Flow International Corporation
    Inventors: Chidambaram Raghavan, Mohamed A. Hashish, Olivier L. Tremoulet, Jr., Shawn M. Callahan, Bruce M. Schuman
  • Patent number: 8277206
    Abstract: A pressure enclosure includes a first component having an opening, a second component coupled to the first component in a position over the opening, a third component positioned between the first and second components and covering the opening, and a load chamber defined by a space between the second and third components and configured such that pressure in the load chamber biases the third component against the first component to seal the opening. The pressure enclosure may be a cylinder of a pump for pressurizing fluid or gas, with the first component a cylinder body, the second component an end cap and the third component a valve body, with the load chamber biasing the valve body against the cylinder body.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: October 2, 2012
    Assignee: Flow International Corporatioin
    Inventors: Chidambaram Raghavan, Kraig T. Kostohris, Katherine M. Madden, Shawn M. Callahan, Sigurd C. Mordre, Mohamed A. Hashish, Olivier L. Tremoulet, Jr.
  • Publication number: 20100224270
    Abstract: A fitting for collecting or distributing high-pressure fluid via fluid transmission lines is provided. The fitting includes a body, and a plurality of apertures formed in the body in a common plane, intersecting inside the body such that all of the apertures are in mutual fluid communication. Each of the apertures is configured to receive a threaded coupling member of a respective high-pressure transmission line. The fitting also includes first and second compression members positioned on opposing sides of the body and coupled thereto so as to exert a compressing bias to the body in an axis perpendicular to the common plane. The compression members each comprise a raised contact surface corresponding to the region of the body where the plurality of apertures meet, and through which the compressing bias is exerted. The fitting may be an elbow-fitting, a tee fitting, a cross-fitting, or some other configuration.
    Type: Application
    Filed: May 21, 2010
    Publication date: September 9, 2010
    Applicant: Flow International Corporation
    Inventors: Chidambaram Raghavan, Mohamed A. Hashish, Olivier L. Tremoulet, JR., Shawn M. Callahan, Bruce M. Schuman
  • Patent number: 7748750
    Abstract: A fitting for collecting or distributing high-pressure fluid via fluid transmission lines is provided. The fitting includes a body, and a plurality of apertures formed in the body in a common plane, intersecting inside the body such that all of the apertures are in mutual fluid communication. The fitting also includes first and second compression members positioned on opposing sides of the body and coupled thereto so as to exert a compressing bias to the body in an axis perpendicular to the common plane. The compression members each comprise a raised contact surface corresponding to the region of the body where the plurality of apertures meet, and through which the compressing bias is exerted. The fitting may be an elbow-fitting, a tee fitting, a cross-fitting, or some other configuration.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: July 6, 2010
    Assignee: Flow International Corporation
    Inventors: Chidambaram Raghavan, Mohamed A. Hashish, Olivier L. Tremoulet, Jr., Shawn M. Callahan, Bruce M. Schuman
  • Patent number: 7641864
    Abstract: A connector for a pressure vessel includes a connector assembly having a first plurality of contacts, and a receiver assembly configured to be positioned within a receiver aperture formed in a closure of the pressure vessel and having a second plurality of contacts. The receiver assembly is configured to receive the connector assembly and place each of the first plurality of contacts in electrical contact with a corresponding one of the second plurality of contacts. A seal is provided between the connector assembly and the wall of the pressure vessel, for substantially sealing the receiver aperture from pressure within the vessel. The connector assembly is configured to be coupled to a product carrier, and sensors positioned in the vessel are coupled via the connector assembly to a data acquisition unit. When the closure is lowered onto the vessel, the receiver assembly contacts the connector assembly coupled to the carrier, closing the electrical contacts connecting the sensors to the acquisition unit.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: January 5, 2010
    Assignee: Avure Technologies Incorporated
    Inventors: Olivier L. Tremoulet, Jr., David O. Monserud, Edmund Y. Ting
  • Patent number: 7367789
    Abstract: A pressure enclosure includes a first component having an opening, a second component coupled to the first component in a position over the opening, a third component positioned between the first and second components and covering the opening, and a load chamber defined by a space between the second and third components and configured such that pressure in the load chamber biases the third component against the first component to seal the opening. The pressure enclosure may be a cylinder of a pump for pressurizing fluid or gas, with the first component a cylinder body, the second component an end cap and the third component a valve body, with the load chamber biasing the valve body against the cylinder body.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: May 6, 2008
    Assignee: Flow International Corporation
    Inventors: Chidambaram Raghavan, Kraig T. Kostohris, Katherine M. Madden, Shawn M. Callahan, Sigurd C. Mordre, Mohamed A. Hashish, Olivier L. Tremoulet, Jr.
  • Patent number: 6802541
    Abstract: Components, assemblies and methods for creating seals in ultrahigh pressure fluid containment systems, are shown and described. Embodiments of the invention allow abutting components of like materials to be compressed against each other without the need of an intermediate gasket or other structure, and reduce relative movement between the abutting parts to increase the useful life of the components. Embodiments of the invention incorporate a first component with a tapered mouth having a curved cross-sectional profile, and a complementary component having a mouth with a linear cross-sectional profile. The profiles contact each other at a tangential contact angle ranging between 40 and 68 degrees with respect to the radial axis of the components.
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: October 12, 2004
    Assignee: Flow International Corporation
    Inventors: Jordan J. Hopinks, Olivier L. Tremoulet, Jr., Larry G. Pearson
  • Patent number: 6736407
    Abstract: High-pressure static seals and pressure vessels with static seals for containing fluid at high pressures are shown and described. Embodiments of the invention allow a plug to be easily, manually inserted into and removed from the pressure vessel. A metallic ring in the seal is configured to expand under pressure to prevent an O-ring in the seal from being extruded into a gap between the plug and the vessel wall, but not to expand so much as to cause galling or similar damage when the seal moves with respect to the wall under elevated pressure.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: May 18, 2004
    Assignee: Flow International Corporation
    Inventors: Olivier L. Tremoulet, Jr., Lennart Svensson, Chidambaram Raghavan, Mohamed Hashish
  • Patent number: 6305913
    Abstract: An apparatus and method for pressure processing a pumpable substance, such as a pumpable food product or slurry. In one embodiment, the apparatus includes a pressure vessel having an inlet valve toward one end and outlet valve toward the other end. A flexible bladder is coupled between the inlet and outlet valves for receiving the pumpable substance. The pressure vessel can further include a high-pressure inlet port for receiving high-pressure fluid that biases the membrane inwardly to pressure process the pumpable substance. The pumpable substance is then removed from the vessel through the outlet valve.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: October 23, 2001
    Assignee: Flow International Corporation
    Inventors: Mohamed A. Hashish, Chidambaram Raghavan, Olivier L. Tremoulet, Jr., Bruce M. Schuman
  • Patent number: 6164930
    Abstract: An apparatus and method for pressure processing a pumpable substance. In one embodiment, the apparatus includes a pressure vessel having an inlet port to receive the pumpable substance and an outlet port to remove the pumpable substance. The inlet and outlet ports can be sealed with movable internal valves. Each of the valves can include a purging fluid channel that terminates in a purging zone located between two seals positioned on the valve. Purging fluid can be pumped through the channel and into the purging zone to create a fluid barrier between a pressurized portion of the pumpable substance and any unpressurized or only partially pressurized portion of the pumpable substance. The purging fluid may also sanitize the purging zone and may remove unpressurized or under-pressurized pumpable substance from the purging zone.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: December 26, 2000
    Assignee: Flow International Corporation
    Inventor: Olivier L. Tremoulet, Jr.
  • Patent number: D515675
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: February 21, 2006
    Assignee: Flow International Corporation
    Inventors: Olivier L. Tremoulet, Jr., Lennart Svensson, Chidambaram Raghavan, Mohamed Hashish