Patents by Inventor Olivier Le Neel

Olivier Le Neel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10768133
    Abstract: Miniature resistive gas detectors incorporate thin films that can selectively identify specific gases when heated to certain characteristic temperatures. A solid state gas sensor module is disclosed that includes a gas sensor, a heater, and a temperature sensor, stacked over an insulating recess. The insulating recess is partially filled with a support material that provides structural integrity. The solid state gas sensor module can be integrated on top of an ASIC on a common substrate. With sufficient thermal insulation, such a gas detector can be provided as a low-power component of mobile electronic devices such as smart phones. A method of operating a multi-sensor array allows detection of relative concentrations of different gas species by either using dedicated sensors, or by thermally tuning the sensors to monitor different gas species.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: September 8, 2020
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Ravi Shankar, Olivier Le Neel, Tien-Choy Loh, Shian-Yeu Kam
  • Publication number: 20200110051
    Abstract: The present disclosure is directed to a gas sensor that includes an active sensor area that is exposed to an environment for detection of elements. The gas sensor may be an air quality sensor that can be fixed in position or carried by a user. The gas sensor includes a heater formed above chamber. The gas sensor includes an active sensor layer above the heater that forms the active sensor area. The gas sensor can include a passive conductive layer, such as a hotplate that further conducts and distributes heat from the heater to the active sensor area. The heater can include a plurality of extensions. The heater can also include a first conductive layer and a second conductive layer on the first conductive layer where the second conductive layer includes a plurality of openings to increase an amount of heat and to more evenly distribute heat from the heater to the active sensor area.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 9, 2020
    Inventors: Olivier LE NEEL, Alexandre LE ROCH, Ayoub LAHLALIA, Ravi SHANKAR
  • Patent number: 10557812
    Abstract: The present disclosure is directed to a gas sensor that includes an active sensor area that is exposed to an environment for detection of elements. The gas sensor may be an air quality sensor that can be fixed in position or carried by a user. The gas sensor includes a heater formed above chamber. The gas sensor includes an active sensor layer above the heater that forms the active sensor area. The gas sensor can include a passive conductive layer, such as a hotplate that further conducts and distributes heat from the heater to the active sensor area. The heater can include a plurality of extensions. The heater can also include a first conductive layer and a second conductive layer on the first conductive layer where the second conductive layer includes a plurality of openings to increase an amount of heat and to more evenly distribute heat from the heater to the active sensor area.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: February 11, 2020
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Olivier Le Neel, Alexandre Le Roch, Ayoub Lahlalia, Ravi Shankar
  • Publication number: 20200033309
    Abstract: The present disclosure is directed to a selective multi-gas sensor device that detects when a high concentration level of a particular gas, such as methane, carbon monoxide, and/or ethanol, is present. The selective multi-gas sensor device detects and identifies a particular gas based on a ratio between a sensitivity of a gas sensitive material at a first temperature and a sensitivity of the gas sensitive material at a second temperature.
    Type: Application
    Filed: July 1, 2019
    Publication date: January 30, 2020
    Inventors: Fangxing YUAN, Ravi SHANKAR, Olivier LE NEEL
  • Patent number: 10475992
    Abstract: A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measureable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: November 12, 2019
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Olivier Le Neel, Ravi Shankar
  • Patent number: 10429330
    Abstract: A miniature gas analyzer capable of detecting VOC gases in ambient air as well as sensing relative humidity and ambient temperature can be used to monitor indoor air quality. The VOC gas sensor is thermally controlled and can be tuned to detect a certain gas by programming an adjacent heater. An insulating air pocket formed below the sensor helps to maintain the VOC gas sensor at a desired temperature. A local temperature sensor may be integrated with each gas sensor to provide feedback control. The heater, local temperature sensor, gas sensor(s), relative humidity sensor, and ambient temperature sensor are in the form of patternable thin films integrated on a single microchip, e.g., an ASIC. The device can be incorporated into computer workstations, smart phones, clothing, or other wearable accessories to function as a personal air quality monitor that is smaller, more accurate, and less expensive than existing air quality sensors.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: October 1, 2019
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Olivier Le Neel, Ravi Shankar, Shian Yeu Kam, Tien Choy Loh
  • Publication number: 20190261899
    Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Inventors: Olivier LE NEEL, Suman CHERIAN, Calvin LEUNG
  • Publication number: 20190257780
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 22, 2019
    Inventors: Olivier LE NEEL, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Publication number: 20190257804
    Abstract: The present disclosure is directed to a gas sensor device that detects gases with large molecules (e.g., a gas with a molecular weight between 150 g/mol and 450 g/mol), such as siloxanes. The gas sensor device includes a thin film gas sensor and a bulk film gas sensor. The thin film gas sensor and the bulk film gas sensor each include a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. The SMO film of the thin film gas sensor is an thin film (e.g., between 90 nanometers and 110 nanometers thick), and the SMO film of the bulk film gas sensor is an thick film (e.g., between 5 micrometers and 20 micrometers thick). The gas sensor device detects gases with large molecules based on a variation between resistances of the SMO thin film and the SMO thick film.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 22, 2019
    Inventors: Malek BRAHEM, Hatem MAJERI, Olivier LE NEEL, Ravi SHANKAR, Enrico Rosario ALESSI, Pasquale BIANCOLILLO
  • Publication number: 20190195818
    Abstract: The present disclosure is directed to a gas sensor device that includes a plurality of gas sensors. Each of the gas sensors includes a semiconductor metal oxide (SMO) film, a heater, and a temperature sensor. Each of the SMO films is designed to be sensitive to a different gas concentration range. As a result, the gas sensor device is able to obtain accurate readings for a wide range of gas concentration levels. In addition, the gas sensors are selectively activated and deactivated based on a current gas concentration detected by the gas sensor device. Thus, the gas sensor device is able to conserve power as gas sensors are on when appropriate instead of being continuously on.
    Type: Application
    Filed: December 12, 2018
    Publication date: June 27, 2019
    Inventors: Malek BRAHEM, Hatem Majeri, Olivier Le Neel, Ravi Shankar
  • Patent number: 10317357
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: June 11, 2019
    Assignee: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 10299711
    Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: May 28, 2019
    Assignee: STMICROELECTRONICS PTE. LTD.
    Inventors: Olivier Le Neel, Suman Cherian, Calvin Leung
  • Patent number: 10254261
    Abstract: A microelectronic device capable of detecting multiple gas constituents in ambient air can be used to monitor air quality. The microelectronic air quality monitor includes a plurality of temperature-sensitive gas sensors tuned to detect different gas species. Each gas sensor is tuned by programming an adjacent heater. An insulating air pocket formed below the sensor helps to maintain the sensor at a desired temperature. A temperature sensor may also be integrated with each gas sensor to provide additional feedback control. The heater, temperature sensor, and gas sensors are in the form of patternable thin films integrated on a single microchip. The device can be incorporated into computer workstations, smart phones, clothing, or other wearable accessories to function as a personal air quality monitor that is smaller, more accurate, and less expensive than existing air quality sensors.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: April 9, 2019
    Assignee: STMicroelectronics PTE Ltd
    Inventors: Olivier Le Neel, Tien Choy Loh, Shian Yeu Kam, Ravi Shankar
  • Patent number: 10206247
    Abstract: An integrated circuit is provided having an active circuit. A heating element is adjacent to the active circuit and configured to heat the active circuit. A temperature sensor is also adjacent to the active circuit and configured to measure a temperature of the active circuit. A temperature controller is coupled to the active circuit and configured to receive a temperature signal from the temperature sensor. The temperature controller operates the heating element to heat the active circuit to maintain the temperature of the active circuit in a selected temperature range.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: February 12, 2019
    Assignees: STMICROELECTRONICS, INC., STMICROELECTRONICS ASIA PACIFIC PTE LTD
    Inventors: Fuchao Wang, Olivier Le Neel, Ravi Shankar
  • Publication number: 20190025236
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Application
    Filed: September 11, 2018
    Publication date: January 24, 2019
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Patent number: 10094797
    Abstract: A semiconductor-based multi-sensor module integrates miniature temperature, pressure, and humidity sensors onto a single substrate. Pressure and humidity sensors can be implemented as capacitive thin film sensors, while the temperature sensor is implemented as a precision miniature Wheatstone bridge. Such multi-sensor modules can be used as building blocks in application-specific integrated circuits (ASICs). Furthermore, the multi-sensor module can be built on top of existing circuitry that can be used to process signals from the sensors. An integrated multi-sensor module that uses differential sensors can measure a variety of localized ambient environmental conditions substantially simultaneously, and with a high level of precision. The multi-sensor module also features an integrated heater that can be used to calibrate or to adjust the sensors, either automatically or as needed.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: October 9, 2018
    Assignee: STMICROELECTRONICS PTE LTD.
    Inventors: Olivier Le Neel, Ravi Shankar, Suman Cherian, Calvin Leung, Tien-Choy Loh, Shian-Yeu Kam
  • Publication number: 20180156747
    Abstract: The present disclosure is directed to a gas sensor that includes an active sensor area that is exposed to an environment for detection of elements. The gas sensor may be an air quality sensor that can be fixed in position or carried by a user. The gas sensor includes a heater formed above chamber. The gas sensor includes an active sensor layer above the heater that forms the active sensor area. The gas sensor can include a passive conductive layer, such as a hotplate that further conducts and distributes heat from the heater to the active sensor area. The heater can include a plurality of extensions. The heater can also include a first conductive layer and a second conductive layer on the first conductive layer where the second conductive layer includes a plurality of openings to increase an amount of heat and to more evenly distribute heat from the heater to the active sensor area.
    Type: Application
    Filed: December 1, 2016
    Publication date: June 7, 2018
    Inventors: Olivier LE NEEL, Alexandre LE ROCH, Ayoub LAHLALIA, Ravi SHANKAR
  • Publication number: 20180140234
    Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.
    Type: Application
    Filed: January 17, 2018
    Publication date: May 24, 2018
    Inventors: Olivier LE NEEL, Suman CHERIAN, Calvin LEUNG
  • Publication number: 20180090678
    Abstract: A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measureable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
    Type: Application
    Filed: October 13, 2017
    Publication date: March 29, 2018
    Inventors: Olivier Le Neel, Ravi Shankar
  • Patent number: 9918667
    Abstract: A universal electrochemical micro-sensor can be used either as a biosensor or an environmental sensor. Because of its small size and flexibility, the micro-sensor is suitable for continuous use to monitor fluids within a live subject, or as an environmental monitor. The micro-sensor can be formed on a reusable glass carrier substrate. A flexible polymer backing, together with a set of electrodes, forms a reservoir that contains an electrolytic fluid chemical reagent. During fabrication, the glass carrier substrate protects the fluid chemical reagent from degradation. A conductive micromesh further contains the reagent while allowing partial exposure to the ambient biological or atmospheric environment. The micromesh density can be altered to accommodate fluid reagents having different viscosities. Flexibility is achieved by attaching a thick polymer tape and peeling away the micro-sensor from the glass carrier substrate.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: March 20, 2018
    Assignee: STMICROELECTRONICS PTE. LTD.
    Inventors: Olivier Le Neel, Suman Cherian, Calvin Leung