Patents by Inventor Olivier Pauly

Olivier Pauly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12159213
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing image data. One of the method includes receiving an input image from a source domain, the input image showing an object to be manipulated by a robot in a robotic process; processing the input image to generate an intermediate representation of the input image, comprising: generating a gradient orientation representation and a gradient magnitude representation of the input image; and generating the intermediate representation of the input image from the gradient orientation representation and the gradient magnitude representation; processing the intermediate representation of the input image using a neural network trained to make predictions about objects in images to generate a network output that represents a prediction about physical characteristics of the object in the input image.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: December 3, 2024
    Assignee: Intrinsic Innovation LLC
    Inventors: Olivier Pauly, Stefan Hinterstoisser, Hauke Heibel, Martina Marek, Martin Bokeloh
  • Publication number: 20240352011
    Abstract: The present invention relates to new macrocyclic ligands substituted with at least one picolinate group, to the radioactive complexes thereof and to the uses thereof in medical imaging and/or in therapy, in particular in interventional radiology. The present invention also relates to a new process for preparing ligands according to the invention, and also to the preparation intermediates thereof.
    Type: Application
    Filed: July 29, 2022
    Publication date: October 24, 2024
    Inventors: Olivier Rousseaux, William Pauly-Batard, Olivier Fougere, Sarah Catoen
  • Publication number: 20240221335
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for estimating a pose of an object of interest. One of the methods includes receiving an input including an image that represents a pose of an object, processing the image using a machine learning model to predict output for the image, based on the output from the machine learning model, determining a correspondence between pixels in the image and locations on a three-dimensional model of the object, and determining the pose of the object based on the correspondence. The input further includes pre-processing output after pre-processing data associated with the object. The determined pose are processed by a downstream module to generate an updated pose.
    Type: Application
    Filed: December 8, 2023
    Publication date: July 4, 2024
    Inventors: Olivier Pauly, Stefan Hinterstoisser, Martina Marek, Martin Bokeloh, Hauke Heibel
  • Publication number: 20240208067
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for performing deformation modeling with edge-to-edge constraints. One of the methods includes computing edge-to-edge constraints that match one or more edges in point cloud data to one or more edges in a nominal representation of a workpiece. A current estimate of the deformation data is repeatedly updated according to the computed edge-to-edge constraints. A robotic manipulation task is then performed according to the generated deformation data.
    Type: Application
    Filed: December 12, 2023
    Publication date: June 27, 2024
    Inventors: Martin Bokeloh, Martina Marek, Stefan Hinterstoisser, Olivier Pauly, Hauke Heibel
  • Publication number: 20240169196
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating synthetic data to be used in training machine learning models in an auto-scalable manner. In one aspect, an auto-scalable synthetic data generation system maintains a plurality of synthetic data generator replicas that are each configured to generate synthetic training examples; maintains a plurality of machine learning training workers that are each configured to obtain synthetic training examples and to use the synthetic training examples to concurrently perform operations required to update the machine learning model; determines, by an autoscaler of the synthetic data generation system, that a number of synthetic data generator replicas is insufficient to service a current demand level of the plurality of machine learning training workers; and in response, deploys, by the autoscaler, one or more additional synthetic data generator replicas in the synthetic data generation system.
    Type: Application
    Filed: November 23, 2022
    Publication date: May 23, 2024
    Inventors: Olivier Pauly, Stefan Hinterstoisser, Martina Marek, Martin Bokeloh, Hauke Heibel, Stefan Sauer
  • Patent number: 11783950
    Abstract: A method and a system are for providing a medical data structure for a patient. The system includes a plurality of data sources, each data source to provide medical data of the patient; a computing device to implement an artificial neural network structure a plurality of encoding modules, each being realized as an artificial neural network configured and trained to generate, from the medical data from the corresponding data source, a corresponding encoded output matrix; a weighting gate module for each of the encoding modules; a concatenation module configured to concatenate weighted output matrices of the weighting gates to a concatenated output matrix; and an aggregation module realized as an artificial neural network configured and trained to receive the concatenated output matrix and to generate therefrom the medical data structure for the patient, the artificial neural network structure being trained as a whole using a cost function.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: October 10, 2023
    Assignee: Siemens Healthcare GmbH
    Inventor: Olivier Pauly
  • Patent number: 11607809
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for planning robotic movements to perform a given task while satisfying object pose estimation accuracy requirements. One of the methods includes generating a plurality of candidate measurement configurations for measuring an object to be manipulated by a robot; determining respective measurement accuracies for the plurality of candidate measurement configurations; determining a measurement accuracy landscape for the object including defining a high measurement accuracy region based on the respective measurement accuracies for the plurality of candidate measurement configurations; and generating a motion plan for manipulating the object in the robotic process that moves the robot, a sensor, or both, through the high measurement accuracy region when performing pose estimation for the object.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: March 21, 2023
    Assignee: Intrinsic Innovation LLC
    Inventors: Martin Bokeloh, Stefan Hinterstoisser, Olivier Pauly, Hauke Heibel, Martina Marek
  • Publication number: 20220193901
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for planning robotic movements to perform a given task while satisfying object pose estimation accuracy requirements. One of the methods includes generating a plurality of candidate measurement configurations for measuring an object to be manipulated by a robot; determining respective measurement accuracies for the plurality of candidate measurement configurations; determining a measurement accuracy landscape for the object including defining a high measurement accuracy region based on the respective measurement accuracies for the plurality of candidate measurement configurations; and generating a motion plan for manipulating the object in the robotic process that moves the robot, a sensor, or both, through the high measurement accuracy region when performing pose estimation for the object.
    Type: Application
    Filed: December 22, 2020
    Publication date: June 23, 2022
    Inventors: Martin Bokeloh, Stefan Hinterstoisser, Olivier Pauly, Hauke Heibel, Martina Marek
  • Patent number: 11348008
    Abstract: In a method and a computer for determining a training function in order to generate annotated training images, a training image and training-image information are provided to a computer, together with an isolated item of image information that is independent of the training image. A first calculation is made in the computer by applying an image-information-processing first function to the isolated item of image information, and a second calculation is made by applying an image-information-processing second function to the training image. Adjustments to the first and second functions are made based on these calculation results, from which a determination of a training function is then made in the computer.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: May 31, 2022
    Assignee: Siemens Healthcare GmbH
    Inventors: Olivier Pauly, Philipp Seegerer
  • Publication number: 20220138535
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing image data. One of the method includes receiving an input image from a source domain, the input image showing an object to be manipulated by a robot in a robotic process; processing the input image to generate an intermediate representation of the input image, comprising: generating a gradient orientation representation and a gradient magnitude representation of the input image; and generating the intermediate representation of the input image from the gradient orientation representation and the gradient magnitude representation; processing the intermediate representation of the input image using a neural network trained to make predictions about objects in images to generate a network output that represents a prediction about physical characteristics of the object in the input image.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 5, 2022
    Inventors: Olivier Pauly, Stefan Hinterstoisser, Hauke Heibel, Martina Marek, Martin Bokeloh
  • Patent number: 11170581
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a feature extraction neural network to generate domain-invariant feature representations from domain-varying input images. In one aspect, the method includes obtaining a training dataset comprising a first set of target domain images and a second set of real domain images that each have pixel-wise level alignment with a corresponding target domain image, and training the feature extraction neural network on the training dataset based on optimizing an objective function that includes a term that depends on a similarity between respective feature representations generated by the network for a pair of target and source domain images.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: November 9, 2021
    Assignee: Intrinsic Innovation LLC
    Inventors: Martina Marek, Stefan Hinterstoisser, Olivier Pauly, Hauke Heibel, Martin Bokeloh
  • Patent number: 10872699
    Abstract: In order to compare high-dimensional, multi-modal data for a patient to data for other patients, deep learning is used to encode original, multi-modal data for a patient into a compact signature. The compact signature is compared to predetermined compact signatures generated for other patients, and similar predetermined compact signatures are identified based on the comparison. A clinical outcome may be predicted based on the similar predetermined compact signatures that are identified.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 22, 2020
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Martin Kramer, Olivier Pauly
  • Patent number: 10825172
    Abstract: Systems and methods are disclosed for medical image processing using neural networks. A first and a second controller network share a memory to which both the first and second controller network can write data and from which both the first and the second controller network can read data. Reading and writing is performed by respective read and write heads which are advantageously neural networks trained how to write and read in an optimal way. The memory thus provides each controller network with context data generated by the respective other controller network.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: November 3, 2020
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Olivier Pauly, Florin-Cristian Ghesu, Cosmin Ionut Bercea
  • Patent number: 10825149
    Abstract: A framework for defective pixel correction using adversarial networks. In accordance with one aspect, the framework receives first and second training image datasets. The framework performs adversarial training of a corrector and a classifier with the first and second training image datasets respectively. The corrector may be trained to correct a first input image and the classifier may be trained to recognize whether a second input image is real or generated by the corrector. The framework applies the trained corrector to a current image to correct any defective pixels and generate a corrected image. The corrected image may then be presented.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: November 3, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Sebastian Schafer, Kevin Royalty, Olivier Pauly
  • Patent number: 10779785
    Abstract: A method, apparatus and non-transitory computer readable medium are for segmenting different types of structures, including cancerous lesions and regular structures like vessels and skin, in a digital breast tomosynthesis (DBT) volume. In an embodiment, the method includes: pre-classification of the DBT volume in dense and fatty tissue and based on the result; localizing a set of structures in the DBT volume by using a multi-stream deep convolutional neural network; and segmenting the localized structures by calculating a probability for belonging to a specific type of structure for each voxel in the DBT volume by using a deep convolutional neural network for providing a three-dimensional probabilistic map.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: September 22, 2020
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Lucian Mihai Itu, Laszlo Lazar, Siqi Liu, Olivier Pauly, Philipp Seegerer, Iulian Ionut Stroia, Alexandru Turcea, Anamaria Vizitiu, Daguang Xu, Shaohua Kevin Zhou
  • Patent number: 10702233
    Abstract: A method is for determining a two-dimensional mammography dataset. The method includes the receipt of a three-dimensional mammography dataset of an examination region via an interface. The method furthermore includes the first determination of a two-dimensional mammography dataset of the examination region by application of a trained generator function to the three-dimensional mammography dataset via a processing unit, wherein the trained generator function is based on a trained GA network. Through this method, it is possible efficiently to create two-dimensional mammography datasets, which are visually similar to real two-dimensional mammography datasets and can therefore be appraised with standardized methods.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: July 7, 2020
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventor: Olivier Pauly
  • Publication number: 20200065945
    Abstract: A framework for defective pixel correction using adversarial networks. In accordance with one aspect, the framework receives first and second training image datasets. The framework performs adversarial training of a corrector and a classifier with the first and second training image datasets respectively. The corrector may be trained to correct a first input image and the classifier may be trained to recognize whether a second input image is real or generated by the corrector. The framework applies the trained corrector to a current image to correct any defective pixels and generate a corrected image. The corrected image may then be presented.
    Type: Application
    Filed: August 23, 2018
    Publication date: February 27, 2020
    Inventors: Sebastian Schafer, Kevin Royalty, Olivier Pauly
  • Patent number: 10565707
    Abstract: A computer-implemented method for identifying features in 3D image volumes includes dividing a 3D volume into a plurality of 2D slices and applying a pre-trained 2D multi-channel global convolutional network (MC-GCN) to the plurality of 2D slices until convergence. Following convergence of the 2D MC-GCN, a plurality of parameters are extracted from a first feature encoder network in the 2D MC-GCN. The plurality of parameters are transferred to a second feature encoder network in a 3D Anisotropic Hybrid Network (AH-Net). The 3D AH-Net is applied to the 3D volume to yield a probability map;. Then, using the probability map, one or more of (a) coordinates of the objects with non-maximum suppression or (b) a label map of objects of interest in the 3D volume are generated.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: February 18, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Siqi Liu, Daguang Xu, Shaohua Kevin Zhou, Thomas Mertelmeier, Julia Wicklein, Anna Jerebko, Sasa Grbic, Olivier Pauly, Dorin Comaniciu
  • Publication number: 20200035365
    Abstract: A method and a system are for providing a medical data structure for a patient. The system includes a plurality of data sources, each data source to provide medical data of the patient; a computing device to implement an artificial neural network structure a plurality of encoding modules, each being realized as an artificial neural network configured and trained to generate, from the medical data from the corresponding data source, a corresponding encoded output matrix; a weighting gate module for each of the encoding modules; a concatenation module configured to concatenate weighted output matrices of the weighting gates to a concatenated output matrix; and an aggregation module realized as an artificial neural network configured and trained to receive the concatenated output matrix and to generate therefrom the medical data structure for the patient, the artificial neural network structure being trained as a whole using a cost function.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 30, 2020
    Applicant: Siemens Healthcare GmbH
    Inventor: Olivier Pauly
  • Publication number: 20190347792
    Abstract: Systems and methods are disclosed for medical image processing using neural networks. A first and a second controller network share a memory to which both the first and second controller network can write data and from which both the first and the second controller network can read data. Reading and writing is performed by respective read and write heads which are advantageously neural networks trained how to write and read in an optimal way. The memory thus provides each controller network with context data generated by the respective other controller network.
    Type: Application
    Filed: April 24, 2019
    Publication date: November 14, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Olivier PAULY, Florin-Cristian GHESU, Cosmin Ionut BERCEA