Patents by Inventor Olivier Y J P JOUSSELIN

Olivier Y J P JOUSSELIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10156440
    Abstract: A method of analysing blade tip displacements (dijk) derived from a rotor having an array of blades that rotate at a rotational speed (?). The blades are monitored by an array of stationary timing probes for at least two revolutions (j) of the rotor. Define asynchronous displacement (dijk_A) as a sum of a sinusoidal term (Va) and an offset per probe term (Oo). Define synchronous displacement (dijk_S) as a sum of a sinusoidal term (Vs) and a common offset term (Cc). Solve the asynchronous displacements (dijk_A) using the blade tip displacements (dijk) to give asynchronous amplitude (|a|), offset per probe (ok) and asynchronous residuals (rijk_A). Solve the synchronous displacements (dijk_S) using the blade tip displacements (dijk) to give synchronous amplitude (|s|), common offset (cj) and synchronous residuals (rijk_S).
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: December 18, 2018
    Assignee: ROLLS-ROYCE plc
    Inventor: Olivier Y J P Jousselin
  • Patent number: 9593592
    Abstract: A method of analyzing blade tip timing data obtained from an array (Pk) of stationary timing probes (3) that are spaced at integer multiples of a base angle. Replace one of the probes (3) with a virtual probe (Pv) to give a virtual probe set (42). Set an initial probe angle (?v) and an initial engine order (EOv) for the virtual probe (Pv). Calculate the condition number (CN) for the virtual probe set (42). If the condition number (CN) at least meets a threshold criterion, solve the virtual probe set (42) for blade tip displacement amplitude. Else increment the virtual probe angle (?v) and/or the virtual engine order and iterate from calculating the condition number. Else reinstate the replaced probe (3) and replace a different probe (3) from the array of probes (Pk) with the virtual probe (Pv); then iterate from setting the initial virtual probe angle and engine order.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: March 14, 2017
    Assignee: ROLLS-ROYCE plc
    Inventor: Olivier Y J P Jousselin
  • Patent number: 9528387
    Abstract: A method of determining rotor blade axial displacement (bij). The rotor blade tip (34) comprises first and second measurement features (36, 38) arranged to make an acute angle therebetween. Measure time of arrival (tijk) of the once per revolution feature (1), first and second edges (40, 42) of the first measurement feature (36), and first and second edges (44, 46) of the second measurement feature (38), for at least two revolutions of the rotor (2). Convert these to circumferential distances (dijk) for each revolution. Calculate a feature angle (?ijk) between each measurement feature (36, 38) and the once per revolution feature (1) for each revolution. Calculate blade untwist angle (?ij) from the change in feature angle (?ijk) between measured revolutions. Calculate the rotor blade axial displacement (bij) from the blade untwist angle (?ij) and the circumferential distance (dijk) of the point from one of the measurement features (36, 38).
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: December 27, 2016
    Assignee: ROLLS-ROYCE plc
    Inventor: Olivier Y J P Jousselin
  • Publication number: 20140363274
    Abstract: A method of analysing blade tip timing data obtained from an array (Pk) of stationary timing probes (3) that are spaced at integer multiples of a base angle. Replace one of the probes (3) with a virtual probe (Pv) to give a virtual probe set (42). Set an initial probe angle (?v) and an initial engine order (EOv) for the virtual probe (Pv). Calculate the condition number (CN) for the virtual probe set (42). If the condition number (CN) at least meets a threshold criterion, solve the virtual probe set (42) for blade tip displacement amplitude. Else increment the virtual probe angle (?v) and/or the virtual engine order and iterate from calculating the condition number. Else reinstate the replaced probe (3) and replace a different probe (3) from the array of probes (Pk) with the virtual probe (Pv); then iterate from setting the initial virtual probe angle and engine order.
    Type: Application
    Filed: March 25, 2014
    Publication date: December 11, 2014
    Applicant: ROLLS-ROYCE PLC
    Inventor: Olivier Y. J. P. JOUSSELIN
  • Publication number: 20140365166
    Abstract: A method of analysing blade tip displacements (dijk) derived from a rotor having an array of blades that rotate at a rotational speed (?). The blades are monitored by an array of stationary timing probes for at least two revolutions (j) of the rotor. Define asynchronous displacement (dijk_A) as a sum of a sinusoidal term (Va) and an offset per probe term (Oo). Define synchronous displacement (dijk_S) as a sum of a sinusoidal term (Vs) and a common offset term (Cc). Solve the asynchronous displacements (dijk_A) using the blade tip displacements (dijk) to give asynchronous amplitude (|a|), offset per probe (ok) and asynchronous residuals (rijk_A). Solve the synchronous displacements (dijk_S) using the blade tip displacements (dijk) to give synchronous amplitude (|s|), common offset (cj) and synchronous residuals (rijk_S).
    Type: Application
    Filed: March 25, 2014
    Publication date: December 11, 2014
    Applicant: ROLLS-ROYCE PLC
    Inventor: Olivier Y J P JOUSSELIN
  • Publication number: 20140355007
    Abstract: A method of determining rotor blade axial displacement (bij). The rotor blade tip (34) comprises first and second measurement features (36, 38) arranged to make an acute angle therebetween. Measure time of arrival (tijk) of the once per revolution feature (1), first and second edges (40, 42) of the first measurement feature (36), and first and second edges (44, 46) of the second measurement feature (38), for at least two revolutions of the rotor (2). Convert these to circumferential distances (dijk) for each revolution. Calculate a feature angle (?ijk) between each measurement feature (36, 38) and the once per revolution feature (1) for each revolution. Calculate blade untwist angle (?ij) from the change in feature angle (?ijk) between measured revolutions. Calculate the rotor blade axial displacement (bij) from the blade untwist angle (?ij) and the circumferential distance (dijk) of the point from one of the measurement features (36, 38).
    Type: Application
    Filed: March 25, 2014
    Publication date: December 4, 2014
    Applicant: ROLLS-ROYCE PLC
    Inventor: Olivier Y J P JOUSSELIN