Patents by Inventor Olle Heinonen

Olle Heinonen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9111565
    Abstract: Embodiments of a single data storage device with multiple different data recording media surfaces are disclosed. In one embodiment, at least one of the data recording media surfaces is conventional, such as a continuous or discrete track recording media. Another of the data recording media surfaces is a relatively high areal density, high data rate recording media, such as a bit patterned media (BPM) recording media.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: August 18, 2015
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Olle Heinonen, Wenzhong Zhu
  • Patent number: 8724252
    Abstract: In order to improve a consistent data track during writing to a storage medium, a plurality of read sensors are affixed to a transducer head. In one implementation, the transducer head includes multiple read sensors placed up-track of the write pole. In another implementation, the transducer head includes at least one read sensor placed up-track of the write pole and at least one read sensor placed down-track of the write pole. Each position of the multiple read sensors relative to the write pole may be unique. One or more read signals of selected read sensors are used to determine the read location and therefore the write pole location relative to the storage medium.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: May 13, 2014
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Olle Heinonen, Yonghua Chen
  • Patent number: 8686388
    Abstract: A resistive sense memory cell includes a layer of crystalline praseodymium calcium manganese oxide and a layer of amorphous praseodymium calcium manganese oxide disposed on the layer of crystalline praseodymium calcium manganese oxide forming a resistive sense memory stack. A first and second electrode are separated by the resistive sense memory stack. The resistive sense memory cell can further include an oxygen diffusion barrier layer separating the layer of crystalline praseodymium calcium manganese oxide from the layer of amorphous praseodymium calcium manganese oxide a layer. Methods include depositing an amorphous praseodymium calcium manganese oxide disposed on the layer of crystalline praseodymium calcium manganese oxide forming a resistive sense memory stack.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: April 1, 2014
    Assignee: Seagater Technology LLC
    Inventors: Andreas Roelofs, Markus Siegert, Venugopalan Vaithyanathan, Wei Tian, Yongchul Ahn, Muralikrishnan Balakrishnan, Olle Heinonen
  • Patent number: 8681539
    Abstract: Spin-transfer torque memory includes a composite free magnetic element, a reference magnetic element having a magnetization orientation that is pinned in a reference direction, and an electrically insulating and non-magnetic tunneling barrier layer separating the composite free magnetic element from the magnetic reference element. The free magnetic element includes a hard magnetic layer exchanged coupled to a soft magnetic layer. The composite free magnetic element has a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: March 25, 2014
    Assignee: Seagate Technology LLC
    Inventors: Yuankai Zheng, Dimitar V. Dimitrov, Dexin Wang, Haiwen Xi, Kaizhong Gao, Olle Heinonen, Wenzhong Zhu
  • Publication number: 20130314816
    Abstract: In order to improve a consistent data track during writing to a storage medium, a plurality of read sensors are affixed to a transducer head. In one implementation, the transducer head includes multiple read sensors placed up-track of the write pole. In another implementation, the transducer head includes at least one read sensor placed up-track of the write pole and at least one read sensor placed down-track of the write pole. Each position of the multiple read sensors relative to the write pole may be unique. One or more read signals of selected read sensors are used to determine the read location and therefore the write pole location relative to the storage medium.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Seagate Technology LLC
    Inventors: Kaizhong Gao, Olle Heinonen, Yonghua Chen
  • Publication number: 20130229862
    Abstract: Spin-transfer torque memory includes a composite free magnetic element, a reference magnetic element having a magnetization orientation that is pinned in a reference direction, and an electrically insulating and non-magnetic tunneling barrier layer separating the composite free magnetic element from the magnetic reference element. The free magnetic element includes a hard magnetic layer exchanged coupled to a soft magnetic layer. The composite free magnetic element has a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit.
    Type: Application
    Filed: April 15, 2013
    Publication date: September 5, 2013
    Applicant: SEGATE TECHNOLOGY LLC
    Inventors: Yuankai Zheng, Dimitar V. Dimitrov, Dexin Wang, Haiwen Xi, Kaizhong Gao, Olle Heinonen, Wenzhong Zhu
  • Patent number: 8508005
    Abstract: A spin-transfer torque memory unit includes a free magnetic layer having a magnetic easy axis; a reference magnetic element having a magnetization orientation that is pinned in a reference direction; an electrically insulating and non-magnetic tunneling barrier layer separating the free magnetic layer from the magnetic reference element; and a compensation element adjacent to the free magnetic layer. The compensation element applies a bias field on the magnetization orientation of the free magnetic layer. The bias field is formed of a first vector component parallel to the easy axis of the free magnetic layer and a second vector component orthogonal to the easy axis of the free magnetic layer. The bias field reduces a write current magnitude required to switch the direction of the magnetization orientation of the free magnetic layer.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: August 13, 2013
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Haiwen Xi, Wenzhong Zhu, Olle Heinonen
  • Patent number: 8508880
    Abstract: In order to improve a consistent data track during writing to a storage medium, a plurality of read sensors are affixed to a transducer head. In one implementation, the transducer head includes multiple read sensors placed up-track of the write pole. In another implementation, the transducer head includes at least one read sensor placed up-track of the write pole and at least one read sensor placed down-track of the write pole. Each position of the multiple read sensors relative to the write pole may be unique. One or more read signals of selected read sensors are used to determine the read location and therefore the write pole location relative to the storage medium.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: August 13, 2013
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Olle Heinonen, Yonghua Chen
  • Patent number: 8422279
    Abstract: Spin-transfer torque memory includes a composite free magnetic element, a reference magnetic element having a magnetization orientation that is pinned in a reference direction, and an electrically insulating and non-magnetic tunneling barrier layer separating the composite free magnetic element from the magnetic reference element. The free magnetic element includes a hard magnetic layer exchanged coupled to a soft magnetic layer. The composite free magnetic element has a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: April 16, 2013
    Assignee: Seagate Technology LLC
    Inventors: Yuankai Zheng, Dimitar V. Dimitrov, Dexin Wang, Haiwen Xi, Kaizhong Gao, Olle Heinonen, Wenzhong Zhu
  • Publication number: 20120273744
    Abstract: A resistive sense memory cell includes a layer of crystalline praseodymium calcium manganese oxide and a layer of amorphous praseodymium calcium manganese oxide disposed on the layer of crystalline praseodymium calcium manganese oxide forming a resistive sense memory stack. A first and second electrode are separated by the resistive sense memory stack. The resistive sense memory cell can further include an oxygen diffusion barrier layer separating the layer of crystalline praseodymium calcium manganese oxide from the layer of amorphous praseodymium calcium manganese oxide a layer. Methods include depositing an amorphous praseodymium calcium manganese oxide disposed on the layer of crystalline praseodymium calcium manganese oxide forming a resistive sense memory stack.
    Type: Application
    Filed: July 12, 2012
    Publication date: November 1, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Andreas Roelofs, Markus Siegert, Venugopalan Vaithyanathan, Wei Tian, Yongchul Ahn, Muralikrishnan Balakrishnan, Olle Heinonen
  • Publication number: 20120248558
    Abstract: A spin-transfer torque memory unit includes a free magnetic layer having a magnetic easy axis; a reference magnetic element having a magnetization orientation that is pinned in a reference direction; an electrically insulating and non-magnetic tunneling barrier layer separating the free magnetic layer from the magnetic reference element; and a compensation element adjacent to the free magnetic layer. The compensation element applies a bias field on the magnetization orientation of the free magnetic layer. The bias field is formed of a first vector component parallel to the easy axis of the free magnetic layer and a second vector component orthogonal to the easy axis of the free magnetic layer. The bias field reduces a write current magnitude required to switch the direction of the magnetization orientation of the free magnetic layer.
    Type: Application
    Filed: May 22, 2012
    Publication date: October 4, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Kaizhong Gao, Haiwen Xi, Wenzhong Zhu, Olle Heinonen
  • Publication number: 20120206830
    Abstract: In order to improve a consistent data track during writing to a storage medium, a plurality of read sensors are affixed to a transducer head. In one implementation, the transducer head includes multiple read sensors placed up-track of the write pole. In another implementation, the transducer head includes at least one read sensor placed up-track of the write pole and at least one read sensor placed down-track of the write pole. Each position of the multiple read sensors relative to the write pole may be unique. One or more read signals of selected read sensors are used to determine the read location and therefore the write pole location relative to the storage medium.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 16, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Kaizhong Gao, Olle Heinonen, Yonghua Chen
  • Patent number: 8227783
    Abstract: A resistive sense memory cell includes a layer of crystalline praseodymium calcium manganese oxide and a layer of amorphous praseodymium calcium manganese oxide disposed on the layer of crystalline praseodymium calcium manganese oxide forming a resistive sense memory stack. A first and second electrode are separated by the resistive sense memory stack. The resistive sense memory cell can further include an oxygen diffusion barrier layer separating the layer of crystalline praseodymium calcium manganese oxide from the layer of amorphous praseodymium calcium manganese oxide a layer. Methods include depositing an amorphous praseodymium calcium manganese oxide disposed on the layer of crystalline praseodymium calcium manganese oxide forming a resistive sense memory stack.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: July 24, 2012
    Assignee: Seagate Technology LLC
    Inventors: Andreas Roelofs, Markus Siegert, Venugopalan Vaithyanathan, Wei Tian, Yongchul Ahn, Muralikrishnan Balakrishnan, Olle Heinonen
  • Patent number: 8203192
    Abstract: Spin-transfer torque memory having a compensation element is disclosed. A spin-transfer torque memory unit includes a free magnetic layer having a magnetic easy axis and a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit; a reference magnetic element having a magnetization orientation that is pinned in a reference direction; an electrically insulating and non-magnetic tunneling barrier layer separating the free magnetic layer from the magnetic reference element; and a compensation element adjacent to the free magnetic layer. The compensation element applies a bias field on the magnetization orientation of the free magnetic layer. The bias field is formed of a first vector component parallel to the easy axis of the free magnetic layer and a second vector component orthogonal to the easy axis of the free magnetic layer.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: June 19, 2012
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Haiwen Xi, Wenzhong Zhu, Olle Heinonen
  • Publication number: 20120039115
    Abstract: Spin-transfer torque memory includes a composite free magnetic element, a reference magnetic element having a magnetization orientation that is pinned in a reference direction, and an electrically insulating and non-magnetic tunneling barrier layer separating the composite free magnetic element from the magnetic reference element. The free magnetic element includes a hard magnetic layer exchanged coupled to a soft magnetic layer. The composite free magnetic element has a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit.
    Type: Application
    Filed: October 21, 2011
    Publication date: February 16, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Yuankai Zheng, Dimitar V. Dimitrov, Dexin Wang, Haiwen Xi, Kaizhong Gao, Olle Heinonen, Wenzhong Zhu
  • Patent number: 8053255
    Abstract: Spin-transfer torque memory having a compensation element is disclosed. A spin-transfer torque memory unit includes a free magnetic layer having a magnetic easy axis and a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit; a reference magnetic element having a magnetization orientation that is pinned in a reference direction; an electrically insulating and non-magnetic tunneling barrier layer separating the free magnetic layer from the magnetic reference element; and a compensation element adjacent to the free magnetic layer. The compensation element applies a bias field on the magnetization orientation of the free magnetic layer. The bias field is formed of a first vector component parallel to the easy axis of the free magnetic layer and a second vector component orthogonal to the easy axis of the free magnetic layer.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: November 8, 2011
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Haiwen Xi, Wenzhong Zhu, Olle Heinonen
  • Patent number: 8045366
    Abstract: Spin-transfer torque memory includes a composite free magnetic element, a reference magnetic element having a magnetization orientation that is pinned in a reference direction, and an electrically insulating and non-magnetic tunneling barrier layer separating the composite free magnetic element from the magnetic reference element. The free magnetic element includes a hard magnetic layer exchanged coupled to a soft magnetic layer. The composite free magnetic element has a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: October 25, 2011
    Assignee: Seagate Technology LLC
    Inventors: Yuankai Zheng, Dimitar V. Dimitrov, Dexin Wang, Haiwen Xi, Kaizhong Gao, Olle Heinonen, Wenzhong Zhu
  • Publication number: 20110194343
    Abstract: Spin-transfer torque memory having a compensation element is disclosed. A spin-transfer torque memory unit includes a free magnetic layer having a magnetic easy axis and a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit; a reference magnetic element having a magnetization orientation that is pinned in a reference direction; an electrically insulating and non-magnetic tunneling barrier layer separating the free magnetic layer from the magnetic reference element; and a compensation element adjacent to the free magnetic layer. The compensation element applies a bias field on the magnetization orientation of the free magnetic layer. The bias field is formed of a first vector component parallel to the easy axis of the free magnetic layer and a second vector component orthogonal to the easy axis of the free magnetic layer.
    Type: Application
    Filed: April 14, 2011
    Publication date: August 11, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Kaizhong Gao, Haiwen Xi, Wenzhong Zhu, Olle Heinonen
  • Publication number: 20110006275
    Abstract: A resistive sense memory cell includes a layer of crystalline praseodymium calcium manganese oxide and a layer of amorphous praseodymium calcium manganese oxide disposed on the layer of crystalline praseodymium calcium manganese oxide forming a resistive sense memory stack. A first and second electrode are separated by the resistive sense memory stack. The resistive sense memory cell can further include an oxygen diffusion barrier layer separating the layer of crystalline praseodymium calcium manganese oxide from the layer of amorphous praseodymium calcium manganese oxide a layer. Methods include depositing an amorphous praseodymium calcium manganese oxide disposed on the layer of crystalline praseodymium calcium manganese oxide forming a resistive sense memory stack.
    Type: Application
    Filed: July 13, 2009
    Publication date: January 13, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Andreas Roelofs, Markus Siegert, Venugopalan Vaithyanathan, Wei Tian, Yongchul Ahn, Muralikrishnan Balakrishnan, Olle Heinonen
  • Publication number: 20100226169
    Abstract: Spin-transfer torque memory having a compensation element is disclosed. A spin-transfer torque memory unit includes a free magnetic layer having a magnetic easy axis and a magnetization orientation that can change direction due to spin-torque transfer when a write current passes through the spin-transfer torque memory unit; a reference magnetic element having a magnetization orientation that is pinned in a reference direction; an electrically insulating and non-magnetic tunneling barrier layer separating the free magnetic layer from the magnetic reference element; and a compensation element adjacent to the free magnetic layer. The compensation element applies a bias field on the magnetization orientation of the free magnetic layer. The bias field is formed of a first vector component parallel to the easy axis of the free magnetic layer and a second vector component orthogonal to the easy axis of the free magnetic layer.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 9, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Kaizhong Gao, Haiwen Xi, Wenzhong Zhu, Olle Heinonen