Patents by Inventor Olubunmi Adetutu

Olubunmi Adetutu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020000665
    Abstract: An interconnect overlies a semiconductor device substrate (10). In one embodiment, a conductive barrier layer overlies a portion of the interconnect, a passivation layer (92) overlies the conductive barrier layer and the passivation layer (92) has an opening that exposes portions of the conductive barrier layer (82). In an alternate embodiment a passivation layer (22) overlies the interconnect, the passivation layer (22) has an opening (24) that exposes the interconnect and a conductive barrier layer (32) overlies the interconnect within the opening (24).
    Type: Application
    Filed: April 5, 1999
    Publication date: January 3, 2002
    Inventors: ALEXANDER L. BARR, SURESH VENKATESAN, DAVID B. CLEGG, REBECCA G. COLE, OLUBUNMI ADETUTU, STUART E. GREER, BRIAN G. ANTHONY, RAMNATH VENKATRAMAN, GREGOR BRAECKELMANN, DOUGLAS M. REBER, STEPHEN R. CROWN
  • Patent number: 6294820
    Abstract: A method for forming a tantalum-based anti-reflective coating (ARC) layer begins by forming an MOS metallic gate electrode layer (20) over a substrate (20). The MOS metallic gate electrode layer (20) is covered with an ARC layer (22). The ARC layer is preferably tantalum pentoxide or a tantalum pentoxide layer doped with one or more of nitrogen atoms and/or silicon atoms. The layers (22 and 20) are then selectively masked photoresist (24) that is selectively exposed to deep ultraviolet (DUV) radiation (28). The ARC layer (22) improves lithographic critical dimension (CD) control of the MOS metallic gate during exposure. The final MOS metallic gate is then patterned and etched using a fluorine-chlorine-fluorine time-progressed reactive ion etch (RIE) process, whereby metallic-gate MOS transistors are eventually formed.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: September 25, 2001
    Assignee: Motorola, Inc.
    Inventors: Kevin Lucas, Olubunmi Adetutu, Christopher C. Hobbs, Yolanda Musgrove, Yeong-Jyh Tom Lii
  • Patent number: 6268289
    Abstract: A method for forming a copper interconnect begins by depositing a barrier layer (48) within an in-laid region (18). An edge exclusion protection layer (50) is formed over the barrier layer (48), and this layer (50) is processed so that it only lies within the edge exclusion region (20) of the wafer. The layer (50) is removed from active area portions of the wafer so that contact resistance of copper interconnects is not affected. Wet surface processing is used to form a catalyst (64b) on the wafer surface to enable electroless copper plating within active areas of the wafer to form a copper seed layer (52). The layer (52) is not formed in an edge exclusion region (20). Electroplating is then used to thicken the copper material to form a copper layer (54) over the layer (52) wherein the in-laid copper interconnect is completed.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: July 31, 2001
    Assignee: Motorola Inc.
    Inventors: Rina Chowdhury, Ajay Jain, Olubunmi Adetutu
  • Patent number: 6136678
    Abstract: A method for processing a conductive layer, such as a doped polysilicon layer (14) of a gate stack, provides a degas step after precleaning to reduce particle count and defectivity. The conductive layer is provided on a substrate (10), e.g., a silicon wafer. The substrate (10) and conductive layer are subjected to an elevated temperature, under a vacuum, whereby certain species are liberated. The substrate having the conductive layer formed thereon is then removed from the chamber, and moved to a second, separate chamber, in which a second conductive layer (20) is deposited. By switching chambers, the liberated species are largely prevented from contributing to particle count at the interface between the conductive layers. Alternatively, the second conductive layer is formed in the same chamber, provided that the liberated species are removed from the chamber prior to deposition of the second conductive layer.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: October 24, 2000
    Assignee: Motorola, Inc.
    Inventors: Olubunmi Adetutu, James D. Hayden, Chitra Subramanian, Archana Redkar, Anthony Mark Miscione, Mark G. Fernandes
  • Patent number: 6084279
    Abstract: Metal semiconductor nitride gate electrodes (40, 70) are formed for use in a semiconductor device (60). The gate electrodes (40, 70) may be formed by sputter deposition, low pressure chemical vapor deposition (LPCVD), or plasma enhanced chemical vapor deposition (PECVD). The materials are expected to etch similar to silicon-containing compounds and may be etched in traditional halide-based etching chemistries. The metal semiconductor nitride gate electrodes (40, 70) are relatively stable, can be formed relatively thinner than traditional gate electrodes (40, 70) and work functions near the middle of the band gap for the material of the substrate (12).
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: July 4, 2000
    Assignee: Motorola Inc.
    Inventors: Bich-Yen Nguyen, J. Olufemi Olowolafe, Bikas Maiti, Olubunmi Adetutu, Philip J. Tobin
  • Patent number: 6004850
    Abstract: A method for forming a tantalum-based anti-reflective coating (ARC) layer begins by forming an MOS metallic gate electrode layer (20) over a substrate (20). The MOS metallic gate electrode layer (20) is covered with an ARC layer (22). The ARC layer is preferably tantalum pentoxide or a tantalum pentoxide layer doped with one or more of nitrogen atoms and/or silicon atoms. The layers (22 and 20) are then selectively masked photoresist (24) that is selectively exposed to deep ultraviolet (DUV) radiation (28). The ARC layer (22) improves lithographic critical dimension (CD) control of the MOS metallic gate during exposure. The final MOS metallic gate is then patterned and etched using a fluorine-chlorine-fluorine time-progressed reactive ion etch (RIE) process, whereby metallic-gate MOS transistors are eventually formed.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: December 21, 1999
    Assignee: Motorola Inc.
    Inventors: Kevin Lucas, Olubunmi Adetutu, Christopher C. Hobbs, Yolanda Musgrove, Yeong-Jyh Tom Lii
  • Patent number: 5888588
    Abstract: A semiconductor device (10) includes a gate electrode (61) having a silicon/tungsten nitride/tungsten silicon nitride/tungsten silicide composition. The tungsten nitride film (21) and tungsten suicide film (23) are formed using chemical vapor deposition (CVD). The tungsten nitride film is formed using a tungsten halide and N.sub.2 R.sup.1 R.sup.2, where each of R.sup.1 and R.sup.2 is hydrogen, an alkyl group, an alkenyl group, or an alkynyl group. The tungsten nitride film (21) is an etch stop when patterning the tungsten silicide film (23). The CVD tungsten nitride film (21) helps to improve gate dielectric integrity and reduces interface traps when compared to a sputtered tungsten nitride film (21). Also, N.sub.2 R.sup.1 R.sup.2 can be used to remove halogens that are adsorbed onto walls of a reaction chamber than is cleaned between depositions of substrates.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: March 30, 1999
    Assignee: Motorola, Inc.
    Inventors: Rajan Nagabushnam, Olubunmi Adetutu, Yeong-Jyh Tom Lii
  • Patent number: 5882243
    Abstract: A polishing system (10) is used to polish a semiconductor wafer (16) in accordance with the present invention. Polishing system (10) includes a wafer carrier (14) which includes a modulation unit (20). Modulation unit (20) includes a plurality of capacitors made up of a flexible lower plate (22) and a plurality of smaller upper plate segments (24). A controller (40) monitors the capacitance between each smaller upper plate segment (24) and lower plate (22), and compares the measured capacitance against a predefined set capacitance. To the extent the measured capacitance and predefined capacitance are different, controller (40) adjusts the voltage being applied to the respective upper plate segment (24) so that the measured capacitance and predefined capacitance are aligned. Thus, the present invention is able to achieve dynamic and localized control of the shape of the wafer as it is being polished.
    Type: Grant
    Filed: April 24, 1997
    Date of Patent: March 16, 1999
    Assignee: Motorola, Inc.
    Inventors: Sanjit Das, Subramoney Iyer, Olubunmi Adetutu, Rajeev Bajaj
  • Patent number: 5721167
    Abstract: A semiconductor device (10) is formed having an SRAM array with a plurality of SRAM cells. In forming the access and latch transistors, two different gate electrode compositions are used to form the access and latch transistors. More specifically, a dielectric layer (22) is formed between two conductive layers (26 and 28) within the gate electrode (52) for the access transistors while the dielectric layer is not formed between the two conductive layers (26 and 28) for the latch transistors. This structure allows an increase in the beta ratio for the SRAM cell thereby making a more stable SRAM cell without having to use diffused resistors between the access transistors in storage nodes or by having to form a differential thickness between the gate dielectric layers for the latch transistors and the access transistors.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: February 24, 1998
    Assignee: Motorola, Inc.
    Inventors: Chitra Subramanian, James D. Hayden, Olubunmi Adetutu, Dean Denning, Arkalgud R. Sitaram