Patents by Inventor Olufemi Dosunmu

Olufemi Dosunmu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230087429
    Abstract: Embodiments herein relate to a photonic integrated circuit (PIC). The PIC may include a transmit module and a receive module. An optical port of the PIC may be coupled to the transmit module or the receive module. A semiconductor optical amplifier (SOA) may be positioned in a signal pathway between the optical port and the transmit module or the receive module. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: November 29, 2022
    Publication date: March 23, 2023
    Inventors: Giovanni Gilardi, Haijiang Yu, Ansheng Liu, Xiaoxing Zhu, Yuliya Akulova, Raghuram Narayan, Pierre Doussiere, Christian Malouin, Olufemi Dosunmu
  • Publication number: 20210391495
    Abstract: In one embodiment of a superluminescent diode, a first diode adapted on a semiconductor die is to be forward-biased to output optical energy in response to a bias signal, and a second diode adapted on the semiconductor die is to be reverse-biased, the second diode to receive and absorb back propagating optical energy from the first diode and output a measure of the back propagating optical energy as an absorber feedback current. A comparator may be configured to compare the absorber feedback current to a reference current and output a comparison signal, and a driver control circuit coupled to the comparator may provide the bias signal based at least in part on the comparison signal. Other embodiments are described and claimed.
    Type: Application
    Filed: August 31, 2021
    Publication date: December 16, 2021
    Inventors: Karan Mehta, Richard Jones, Olufemi Dosunmu
  • Publication number: 20210006044
    Abstract: Embodiments of the present disclosure are directed to a silicon photonics integrated apparatus that includes an input to receive an optical signal, a splitter optically coupled to the input to split the optical signal at a first path and a second path, a polarization beam splitter and rotator (PBSR) optically coupled with the first path or the second path, and a semiconductor optical amplifier (SOA) optically coupled with the first path or the second path and disposed between the splitter and the PBSR. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 17, 2020
    Publication date: January 7, 2021
    Inventors: Jin Hong, Ranjeet Kumar, Meer Nazmus Sakib, Haisheng Rong, Kimchau Nguyen, Mengyuan Huang, Aliasghar Eftekhar, Christian Malouin, Siamak Amiralizadeh Asl, Saeed Fathololoumi, Ling Liao, Yuliya Akulova, Olufemi Dosunmu, Ansheng Liu
  • Publication number: 20070164385
    Abstract: A semiconductor waveguide based optical receiver is disclosed. An apparatus according to aspects of the present invention includes an absorption region including a first type of semiconductor region proximate to a second type of semiconductor region. The first type of semiconductor is to absorb light in a first range of wavelengths and the second type of semiconductor to absorb light in a second range of wavelengths. A multiplication region is defined proximate to and separate from the absorption region. The multiplication region includes an intrinsic semiconductor region in which there is an electric field to multiply the electrons created in the absorption region.
    Type: Application
    Filed: March 15, 2007
    Publication date: July 19, 2007
    Inventors: Michael Morse, Olufemi Dosunmu, Ansheng Liu, Mario Paniccia
  • Publication number: 20060289957
    Abstract: A semiconductor waveguide based optical receiver is disclosed. An apparatus according to aspects of the present invention includes an absorption region including a first type of semiconductor region proximate to a second type of semiconductor region. The first type of semiconductor is to absorb light in a first range of wavelengths and the second type of semiconductor to absorb light in a second range of wavelengths. A multiplication region is defined proximate to and separate from the absorption region. The multiplication region includes an intrinsic semiconductor region in which there is an electric field to multiply the electrons created in the absorption region.
    Type: Application
    Filed: June 28, 2005
    Publication date: December 28, 2006
    Inventors: Michael Morse, Olufemi Dosunmu, Ansheng Liu, Mario Paniccia