Patents by Inventor Ombretta Masala

Ombretta Masala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10796901
    Abstract: A core/shell semiconductor nanoparticle structure comprises a core comprising a halide perovskite semiconductor and a shell comprising a semiconductor material that is not a halide perovskite (and that is substantially free of halide perovskites). The halide perovskite semiconductor core may be of the form AMX3, wherein: A is an organic ammonium such as CH3NH3+, (C8H17)2(CH3NH3)+, PhC2H4NH3+, C6H11CH2NH3+ or 1-adamantyl methyl ammonium, an amidinium such as CH(NH2)2+, or an alkali metal cation such as Li+, Na+, K+, Rb+ or Cs+; M is a divalent metal cation such as Mg2+, Mn2+, Ni2+, Co2+, Pb2+, Sn2+, Zn2+, Ge2+, Eu2+, Cu2+ or Cd2+; and X is a halide anion (F?, Cl?, Br?, I?) or a combination of halide anions.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: October 6, 2020
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nigel L. Pickett, Nathalie C. Gresty, Ombretta Masala, Jie Li
  • Patent number: 10756221
    Abstract: Materials and methods for preparing Cu2XSnY4 nanoparticles, wherein X is Zn, Cd, Hg, Ni, Co, Mn or Fe and Y is S or Se, (CXTY) are disclosed herein. The nanoparticles can be used to make layers for use in thin film photovoltaic (PV) cells. The CXTY materials are prepared by a colloidal synthesis in the presence of labile organo-chalcogens. The organo-chalcogens serves as both a chalcogen source for the nanoparticles and as a capping ligand for the nanoparticles.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: August 25, 2020
    Assignee: Nanoco Technologies, Ltd.
    Inventors: Nathalie Gresty, James Harris, Ombretta Masala, Nigel Pickett, Laura Wylde, Christopher Newman
  • Publication number: 20190019906
    Abstract: Materials and methods for preparing Cu2XSnY4 nanoparticles, wherein X is Zn, Cd, Hg, Ni, Co, Mn or Fe and Y is S or Se, (CXTY) are disclosed herein. The nanoparticles can be used to make layers for use in thin film photovoltaic (PV) cells. The CXTY materials are prepared by a colloidal synthesis in the presence of labile organo-chalcogens. The organo-chalcogens serves as both a chalcogen source for the nanoparticles and as a capping ligand for the nanoparticles.
    Type: Application
    Filed: September 12, 2018
    Publication date: January 17, 2019
    Inventors: Nathalie Gresty, James Harris, Ombretta Masala, Nigel Pickett, Laura Wylde, Christopher Newman
  • Patent number: 10177262
    Abstract: Materials and methods for preparing Cu2XSnY4 nanoparticles, wherein X is Zn, Cd, Hg, Ni, Co, Mn or Fe and Y is S or Se, (CXTY) are disclosed herein. The nanoparticles can be used to make layers for use in thin film photovoltaic (PV) cells. The CXTY materials are prepared by a colloidal synthesis in the presence of labile organo-chalcogens. The organo-chalcogens serves as both a chalcogen source for the nanoparticles and as a capping ligand for the nanoparticles.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: January 8, 2019
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nathalie Gresty, James Harris, Ombretta Masala, Nigel Pickett, Laura Wylde, Christopher Newman
  • Patent number: 10177263
    Abstract: Materials and methods for preparing Cu2XSnY4 nanoparticles, wherein X is Zn, Cd, Hg, Ni, Co, Mn or Fe and Y is S or Se, (CXTY) are disclosed herein. The nanoparticles can be used to make layers for use in thin film photovoltaic (PV) cells. The CXTY materials are prepared by a colloidal synthesis in the presence of labile organo-chalcogens. The organo-chalcogens serves as both a chalcogen source for the nanoparticles and as a capping ligand for the nanoparticles.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 8, 2019
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nathalie Gresty, James Harris, Ombretta Masala, Nigel Pickett, Laura Wylde, Christopher Newman
  • Patent number: 10170651
    Abstract: Various methods are used to provide a desired doping metal concentration in a CIGS-containing ink when the CIGS layer is deposited on a photovoltaic device. When the doping metal is sodium, it may be incorporated by: adding a sodium salt, for example sodium acetate, together with the copper-, indium- and/or gallium-containing reagents at the beginning of the synthesis reaction of Cu(In,Ga)(S,Se)2 nanoparticles; synthesizing Cu(In,Ga)(S,Se)2 nanoparticles and adding a sodium salt to the reaction solution followed by mild heating before isolating the nanoparticles to aid sodium diffusion; and/or, using a ligand that is capable of capping the Cu(In,Ga)(S,Se)2 nanoparticles with one end of its molecular chain and binding to sodium atoms with the other end of its chain.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: January 1, 2019
    Assignee: Nanoco Technologies Ltd.
    Inventors: Christopher Newman, Ombretta Masala, Chet Steinhagen
  • Publication number: 20180366599
    Abstract: Various methods are used to provide a desired doping metal concentration in a CIGS-containing ink when the CIGS layer is deposited on a photovoltaic device. When the doping metal is antimony, it may be incorporated by: adding an antimony salt together with copper-, indium- and/or gallium-containing reagents at the beginning of the synthesis reaction of Cu(In,Ga)(S,Se)2 nanoparticles; synthesizing Cu(In,Ga)(S,Se)2 nanoparticles and adding an antimony salt to the reaction solution followed by mild heating before isolating the nanoparticles to aid antimony diffusion; and/or, using a ligand that is capable of capping the Cu(In,Ga)(S,Se)2 nanoparticles with one end of its molecular chain and binding to antimony atoms with the other end of its chain.
    Type: Application
    Filed: August 24, 2018
    Publication date: December 20, 2018
    Inventors: Christopher Newman, Ombretta Masala, Chet Steinhagen
  • Publication number: 20180248057
    Abstract: A method for the preparation of copper indium gallium diselenide/disulfide (CIGS) nanoparticles utilizes a copper-rich stoichiometry. The copper-rich CIGS nanoparticles are capped with organo-chalcogen ligands, rendering the nanoparticles processable in organic solvents. The nanoparticles may be deposited on a substrate and thermally processed in a chalcogen-rich atmosphere to facilitate conversion of the excess copper to copper selenide or copper sulfide that may act as a sintering flux to promote liquid phase sintering and thus the growth of large grains. The nanoparticles so produced may be used to fabricate CIGS-based photovoltaic devices.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Inventors: Christopher Newman, Ombretta Masala, Paul Kirkham, Cary Allen, Stephen Whitelegg
  • Patent number: 10062568
    Abstract: A method of synthesis of two-dimensional metal chalcogenide monolayers, such as WSe2 and MoSe2, is based on a chemical vapor deposition approach that uses H2Se or alkyl or aryl selenide precursors to form a reactive gas. The gaseous selenium precursor may be introduced into a tube furnace containing a metal precursor at a selected temperature, wherein the selenium and metal precursors react to form metal chalcogenide monolayers.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: August 28, 2018
    Assignee: Nanoco Technologies, Ltd.
    Inventors: Nigel Pickett, Ombretta Masala, Nicky Prabhudas Savjani
  • Patent number: 10059585
    Abstract: A method of synthesis of two-dimensional (2D) nanoflakes comprises the cutting of prefabricated nanoparticles. The method allows high control over the shape, size and composition of the 2D nanoflakes, and can be used to produce material with uniform properties in large quantities. Van der Waals heterostructure devices are prepared by fabricating nanoparticles, chemically cutting the nanoparticles to form nanoflakes, dispersing the nanoflakes in a solvent to form an ink, and depositing the ink to form a thin film.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: August 28, 2018
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nigel Pickett, Steven Daniels, Ombretta Masala
  • Patent number: 9960298
    Abstract: A method for the preparation of copper indium gallium diselenide/disulfide (CIGS) nanoparticles utilizes a copper-rich stoichiometry. The copper-rich CIGS nanoparticles are capped with organo-chalcogen ligands, rendering the nanoparticles processable in organic solvents. The nanoparticles may be deposited on a substrate and thermally processed in a chalcogen-rich atmosphere to facilitate conversion of the excess copper to copper selenide or copper sulfide that may act as a sintering flux to promote liquid phase sintering and thus the growth of large grains. The nanoparticles so produced may be used to fabricate CIGS-based photovoltaic devices.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: May 1, 2018
    Assignee: Nanoco Technologies Ltd.
    Inventors: Christopher Newman, Ombretta Masala, Paul Kirkham, Cary Allen, Stephen Whitelegg
  • Publication number: 20180090312
    Abstract: A core/shell semiconductor nanoparticle structure comprises a core comprising a halide perovskite semiconductor and a shell comprising a semiconductor material that is not a halide perovskite (and that is substantially free of halide perovskites). The halide perovskite semiconductor core may be of the form AMX3, wherein: A is an organic ammonium such as CH3NH3+, (C8H17)2(CH3NH3)+, PhC2H4NH3+, C6H11CH2NH3+ or 1-adamantyl methyl ammonium, an amidinium such as CH(NH2)2+, or an alkali metal cation such as Li+, Na+, K+, Rb+ or Cs+; M is a divalent metal cation such as Mg2+, Mn2+, Ni2+, Co2+, Pb2+, Sn2+, Zn2+, Ge2+, Eu2+, Cu2+ or Cd2+; and X is a halide anion (F?, Cl?, Br?, I?) or a combination of halide anions.
    Type: Application
    Filed: September 25, 2017
    Publication date: March 29, 2018
    Inventors: Nigel L. Pickett, Nathalie C. Gresty, Ombretta Masala, Jie Li
  • Publication number: 20180072947
    Abstract: A method of synthesizing two-dimensional (2D) nanoparticles of transition metal dichalcogenide (TMDC) material utilises a molecular cluster compound. The method allows a high degree of control over the shape, size and composition of the 2D TMDC nanoparticles, and may be used to produce material with uniform properties in large quantities.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Nigel Pickett, Ombretta Masala
  • Publication number: 20180009676
    Abstract: A method of synthesis of two-dimensional (2D) nanoflakes comprises the cutting of prefabricated nanoparticles. The method allows high control over the shape, size and composition of the 2D nanoflakes, and can be used to produce material with uniform properties in large quantities. Van der Waals heterostructure devices are prepared by fabricating nanoparticles, chemically cutting the nanoparticles to form nanoflakes, dispersing the nanoflakes in a solvent to form an ink, and depositing the ink to form a thin film.
    Type: Application
    Filed: June 23, 2017
    Publication date: January 11, 2018
    Inventors: Nigel Pickett, Steven Daniels, Ombretta Masala
  • Publication number: 20170330748
    Abstract: A method of synthesis of two-dimensional metal chalcogenide monolayers, such as WSe2 and MoSe2, is based on a chemical vapor deposition approach that uses H2Se or alkyl or aryl selenide precursors to form a reactive gas. The gaseous selenium precursor may be introduced into a tube furnace containing a metal precursor at a selected temperature, wherein the selenium and metal precursors react to form metal chalcogenide monolayers.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 16, 2017
    Inventors: NIGEL PICKETT, OMBRETTA MASALA, NICKY PRABHUDAS SAVJANI
  • Patent number: 9755101
    Abstract: A method of preparing Group XIII selenide nanoparticles comprises reacting a Group XIII ion source with a selenol compound. The nanoparticles have an MxSey Semiconductor core (where M is In or Ga) and an organic capping ligand attached to the core via a carbon-selenium bond. The selenol provides a source of selenium for incorporation into the semiconductor core and also provides the organic capping ligand. The nanoparticles are particularly suitable for solution-based methods of preparing semiconductor films.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: September 5, 2017
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nathalie Gresty, Ombretta Masala, Christopher Newman, Stephen Whitelegg, Nigel Pickett
  • Patent number: 9548009
    Abstract: An illuminated sign has a primary light source in spaced apart relation to a transparent or translucent substrate having quantum dot phosphors printed or coated thereon. The primary light source may be a blue LED, a white LED or an LED having a significant portion of its emission in the ultraviolet region of the spectrum. The LED may be a backlight for the transparent or translucent substrate and/or an edge light, a down light or an up light.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: January 17, 2017
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nigel Pickett, Ombretta Masala, James Harris, Nathalie Gresty
  • Patent number: 9466743
    Abstract: Nanoparticles containing IUPAC group 11 ions, group 13 ions and sulfur ions are synthesized by adding metal salts and an alkanethiol in an organic solvent and promoting the reaction by applying heat. Nanoparticles are formed at temperatures as low as 200° C. The nanoparticles may be thermally annealed for a certain amount of time at a temperature lower than the reaction temperature (usually ˜40° C. lower) to improve the topology and narrow the size distribution. After the reaction is complete, the nanoparticles may be isolated by the addition of a non-solvent and re-dispersed in organic solvents including toluene, chloroform and hexane to form a nanoparticle ink. Additives may be incorporated in the reaction solution to tailor the final ink viscosity.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: October 11, 2016
    Assignee: Nanoco Technologies Ltd.
    Inventors: James Harris, Christopher Newman, Ombretta Masala, Laura Wylde, Nigel Pickett
  • Publication number: 20160233373
    Abstract: A method of preparing Group XIII selenide nanoparticles comprises reacting a Group XIII ion source with a selenol compound. The nanoparticles have an MxSey Semiconductor core (where M is In or Ga) and an organic capping ligand attached to the core via a carbon-selenium bond. The selenol provides a source of selenium for incorporation into the semiconductor core and also provides the organic capping ligand. The nanoparticles are particularly suitable for solution-based methods of preparing semiconductor films.
    Type: Application
    Filed: April 14, 2016
    Publication date: August 11, 2016
    Inventors: Nathalie Gresty, Ombretta Masala, Christopher Newman, Stephen Whitelegg, Nigel Pickett
  • Publication number: 20160218232
    Abstract: Materials and methods for preparing Cu2XSnY4 nanoparticles, wherein X is Zn, Cd, Hg, Ni, Co, Mn or Fe and Y is S or Se, (CXTY) are disclosed herein. The nanoparticles can be used to make layers for use in thin film photovoltaic (PV) cells. The CXTY materials are prepared by a colloidal synthesis in the presence of labile organo-chalcogens. The organo-chalcogens serves as both a chalcogen source for the nanoparticles and as a capping ligand for the nanoparticles.
    Type: Application
    Filed: April 1, 2016
    Publication date: July 28, 2016
    Inventors: Nathalie Gresty, James Harris, Ombretta Masala, Nigel Pickett, Laura Wylde, Christopher Newman