Patents by Inventor Omer Faruk YILMAZ

Omer Faruk YILMAZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10389469
    Abstract: Systems, methods, and devices for adding an alien or native wavelength optical signal to a fiber optic line. A portion of a spectrum of the fiber optic line corresponding to the optical signal is blocked with a wavelength selective switch (WSS). The portion of the spectrum is gradually unblocked until a power of the optical signal measured after the WSS is equal to a predetermined level. If the power and characteristics of the optical signal after the WSS satisfy one or more criteria, the portion of the spectrum is further unblocked until the power of the optical signal measured at the output is equal to an operational level.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: August 20, 2019
    Assignee: Infinera Corporation
    Inventors: Omer Faruk Yilmaz, Nikhil Kumar Satyarthi, Parveen Kumar Gupta, Jaijo Jose, Saurabh Kumar, Stephane St. Laurent
  • Patent number: 10298317
    Abstract: A method is described in which a loss of spectrum in an optical signal having an optical signal spectrum is detected. The optical signal is transmitted from a first node to a second node. In response to detecting the loss of spectrum in the optical signal, at least one idler carrier without data imposed is supplied into the optical signal spectrum transmitted from the first node to the second node, the optical signal spectrum encompassing a frequency band including a plurality of optical channels, the idler carrier being amplified stimulated emission light having a frequency corresponding to a first optical channel of the plurality of optical channels.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: May 21, 2019
    Assignee: Infinera Corporation
    Inventors: Pierre Mertz, Omer Faruk Yilmaz
  • Publication number: 20180269964
    Abstract: A method is described in which a loss of spectrum in an optical signal having an optical signal spectrum is detected. The optical signal is transmitted from a first node to a second node. In response to detecting the loss of spectrum in the optical signal, at least one idler carrier without data imposed is supplied into the optical signal spectrum transmitted from the first node to the second node, the optical signal spectrum encompassing a frequency band including a plurality of optical channels, the idler carrier being amplified stimulated emission light having a frequency corresponding to a first optical channel of the plurality of optical channels.
    Type: Application
    Filed: December 21, 2017
    Publication date: September 20, 2018
    Inventors: Pierre Mertz, Omer Faruk Yilmaz
  • Publication number: 20180267266
    Abstract: A method is described in which a database is monitored. The database includes information specifying allocations of time periods in which a first optical carrier corresponding to a first optical channel will not be supplying encoded first data into output optical signals being transmitted from a first node to a second node. An idler carrier being amplified stimulated emission light having a frequency corresponding to the first optical channel is supplied into the output optical signals transmitted from the first node to the second node during the time periods in which the first optical carrier will not be supplying encoded first data into the output optical signals.
    Type: Application
    Filed: December 21, 2017
    Publication date: September 20, 2018
    Inventors: Omer Faruk Yilmaz, Matthew Mitchell, Zhong Pan
  • Patent number: 9973294
    Abstract: A node in an optical network may include a wavelength selective switch (WSS) and a processor. The wavelength selective switch may have a plurality of input ports and a plurality of output ports for routing and/or power-controlling of optical slices. The wavelength selective switch may have a plurality of control passbands, each control passband including a one or more optical slices. The processor may determine a passband group (PBG) having a plurality of PBG passbands, each of the plurality of PBG passbands corresponding to a particular control passband. The PBG may be used to translate control information, notifications, and/or instructions.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: May 15, 2018
    Assignee: Infinera Corporation
    Inventors: Parveen Kumar Gupta, Nikhil Kumar Satyarthi, Omer Faruk Yilmaz
  • Publication number: 20180076919
    Abstract: Systems, methods, and devices for adding an alien or native wavelength optical signal to a fiber optic line. A portion of a spectrum of the fiber optic line corresponding to the optical signal is blocked with a wavelength selective switch (WSS). The portion of the spectrum is gradually unblocked until a power of the optical signal measured after the WSS is equal to a predetermined level. If the power and characteristics of the optical signal after the WSS satisfy one or more criteria, the portion of the spectrum is further unblocked until the power of the optical signal measured at the output is equal to an operational level.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 15, 2018
    Applicant: Infinera Corporation
    Inventors: Omer Faruk Yilmaz, Nikhil Kumar Satyarthi, Parveen Kumar Gupta, Jaijo Jose, Sitaraman Padmanabhan, Saurabh Kumar
  • Publication number: 20180048415
    Abstract: A node in an optical network may include a wavelength selective switch (WSS) and a processor. The wavelength selective switch may have a plurality of input ports and a plurality of output ports for routing and/or power-controlling of optical slices. The wavelength selective switch may have a plurality of control passbands, each control passband including a one or more optical slices. The processor may determine a passband group (PBG) having a plurality of PBG passbands, each of the plurality of PBG passbands corresponding to a particular control passband. The PBG may be used to translate control information, notifications, and/or instructions.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 15, 2018
    Inventors: Parveen Kumar GUPTA, Nikhil Kumar SATYARTHI, Omer Faruk YILMAZ
  • Patent number: 9806842
    Abstract: A device may perform a set of sample measurements of a set of slices of spectrum utilized by an input optical signal. The device may perform an analysis of the input optical signal to determine an attenuation profile. The analysis may include identifying a channel in a particular slice of spectrum, of the set of slices of spectrum, based on an optical power of a sample measurement, of the set of sample measurements, satisfying a threshold. The device may apply the attenuation profile to the input optical signal to generate an output optical signal with a particular spectral shape. The device may provide the output optical signal with the particular spectral shape.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: October 31, 2017
    Assignee: Infinera Corporation
    Inventors: Omer Faruk Yilmaz, Ankur Neog, Saurabh Kumar, Sanjeev Ramachandran
  • Publication number: 20170019204
    Abstract: A device may perform a set of sample measurements of a set of slices of spectrum utilized by an input optical signal. The device may perform an analysis of the input optical signal to determine an attenuation profile. The analysis may include identifying a channel in a particular slice of spectrum, of the set of slices of spectrum, based on an optical power of a sample measurement, of the set of sample measurements, satisfying a threshold. The device may apply the attenuation profile to the input optical signal to generate an output optical signal with a particular spectral shape. The device may provide the output optical signal with the particular spectral shape.
    Type: Application
    Filed: July 14, 2015
    Publication date: January 19, 2017
    Inventors: Omer Faruk YILMAZ, Ankur NEOG, Saurabh KUMAR, Sanjeev RAMACHANDRAN