Patents by Inventor Omer Fatih Orberk

Omer Fatih Orberk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7863989
    Abstract: A gain control system comprises a reference stage, a bias replication stage, an operational amplifier, an automatic gain control block, a gain stage, and a crystal oscillator in one embodiment. A negative feedback loop is formed by portions of the operational amplifier, the replica biasing stage, the gain stage, and the automatic gain control stage. The negative feedback loop operatively controls an amplitude of oscillation in the crystal oscillator. The automatic gain control block produces output currents at reference levels in proportion to an input current source. The output current reference levels provide a corresponding yet independent scaling of currents in the bias replication stage and the gain stage. By the scaling capabilities provided a high common mode of voltage is provided between the crystal oscillator and the voltage reference section while stable oscillating characteristics are provided over a broad frequency range.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: January 4, 2011
    Assignee: Spectra Linear, Inc.
    Inventors: Omer Fatih Orberk, Alexei Shkidt
  • Patent number: 7863981
    Abstract: A rail-to-rail operational amplifier has a pair of input terminals and an output terminal, and includes first and second parallel-connected differential input stages configured to generate a differential output signal OUTN, OUTP in response to a differential input signal VINN, VINP received at the pair of input terminals. Each of the first and second differential input stages in turn includes a pair of source-follower transistors and a pair of bulk-driven transistors. The pair of source-follower transistors are respectively coupled between the pair of input terminals and a bulk terminal of the pair of bulk-driven input transistors. Further, the pair of source-follower transistors in the first differential input stage have a different threshold voltage than the source-follower transistors in the second differential input stage.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: January 4, 2011
    Assignee: Spectra Linear, Inc.
    Inventors: Alexei Shkidt, Omer Fatih Orberk
  • Publication number: 20090251214
    Abstract: A rail-to-rail operational amplifier has a pair of input terminals and an output terminal, and includes first and second parallel-connected differential input stages configured to generate a differential output signal OUTN, OUTP in response to a differential input signal VINN, VINP received at the pair of input terminals. Each of the first and second differential input stages in turn includes a pair of source-follower transistors and a pair of bulk-driven transistors. The pair of source-follower transistors are respectively coupled between the pair of input terminals and a bulk terminal of the pair of bulk-driven input transistors. Further, the pair of source-follower transistors in the first differential input stage have a different threshold voltage than the source-follower transistors in the second differential input stage.
    Type: Application
    Filed: April 1, 2009
    Publication date: October 8, 2009
    Applicant: SpectraLinear, Inc.
    Inventors: Alexei Shkidt, Omer Fatih Orberk
  • Publication number: 20090224836
    Abstract: A gain control system comprises a reference stage, a bias replication stage, an operational amplifier, an automatic gain control block, a gain stage, and a crystal oscillator in one embodiment. A negative feedback loop is formed by portions of the operational amplifier, the replica biasing stage, the gain stage, and the automatic gain control stage. The negative feedback loop operatively controls an amplitude of oscillation in the crystal oscillator. The automatic gain control block produces output currents at reference levels in proportion to an input current source. The output current reference levels provide a corresponding yet independent scaling of currents in the bias replication stage and the gain stage. By the scaling capabilities provided a high common mode of voltage is provided between the crystal oscillator and the voltage reference section while stable oscillating characteristics are provided over a broad frequency range.
    Type: Application
    Filed: March 10, 2009
    Publication date: September 10, 2009
    Applicant: SpectraLinear, Inc.
    Inventors: Omer Fatih Orberk, Alexei Shkidt
  • Publication number: 20090224844
    Abstract: Embodiments provide systems and methods for supporting reliable operation of crystals with widely varying fundamental modes of oscillation. In accordance with exemplary embodiments, an architecture is disclosed for an oscillator circuit which allows reliable operation for crystals varying over a wide frequency range, such as 12:1. Some embodiments use selectable current sources to provide variable range control for extending the range of frequencies over which the embodiments may operate properly. Other embodiments include symmetric topologies, cascode topologies, coupling elements, and/or other techniques to improve noise immunity and/or operation in low-source-voltage environments.
    Type: Application
    Filed: March 2, 2009
    Publication date: September 10, 2009
    Applicant: SpectraLinear, Inc.
    Inventors: Omer Fatih Orberk, Alexei Shkidt