Patents by Inventor Omid Veiseh

Omid Veiseh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220313599
    Abstract: The present disclosure relates to implantable constructs designed to deliver antigenic therapeutic reagents to a subject while providing protection from host immune responses. In certain aspects, the constructs are designed to degrade over time or upon a particular signal, thereby providing control of the length of time the therapeutic agent is delivered to the subject.
    Type: Application
    Filed: August 7, 2020
    Publication date: October 6, 2022
    Applicant: William Marsh Rice University
    Inventors: Omid VEISEH, Amanda NASH, Maria Isabel JARVIS-RUOCCO, Sudip MUKHERJEE, Michael David DOERFERT, Samira AGHLARA-FOTOVAT, David Yu ZHANG
  • Patent number: 11446239
    Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: September 20, 2022
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
  • Publication number: 20220267794
    Abstract: Described herein are RPE cells engineered to secrete a GLA protein, as well as compositions, pharmaceutical preparations, and implantable devices comprising the engineered RPE cells, and methods of making and using the same for treating Fabry disease.
    Type: Application
    Filed: March 27, 2020
    Publication date: August 25, 2022
    Inventors: Lauren Emily Barney, Michael Beauregard, Guillaume Carmona, Francisco Caballero Gonzalez, Richard Heidebrecht, Erika Ellen Johnston, Robert James Miller, Owen O'Connor, Matthias Alexander Oberli, David Peritt, Jared A. Sewell, Devyn McKinley Smith, Omid Veiseh, Jeffrey Charles Way, Paul Kevin Wotton, Zoe Yin, Elina Makino, Brian Richard Fluharty, Marianthi Papakosta
  • Publication number: 20220143270
    Abstract: The disclosure describes new devices and methods for vascularizing devices and methods for implanted diagnostics and therapeutics. The present disclosure provides, in certain embodiments, a device containing a degradable shell and a non-degradable core. In certain embodiments, the non-degradable core can include encapsulated therapeutic cells and/or biosensors, wherein the degradable shell serves as a scaffold for blood vessel growth, resulting in enhanced blood flow to the cells and/or biosensors.
    Type: Application
    Filed: February 17, 2020
    Publication date: May 12, 2022
    Applicant: William Marsh Rice University
    Inventors: Omid VEISEH, Bagrat GRIGORYAN, Daniel Warren SAZER, Siavash PARKHIDEH, Jordan MILLER, Sudip MUKHERJEE
  • Patent number: 11318231
    Abstract: Neurological implants whose surfaces have been chemically and covalently modified to impart beneficial properties to the neurological implants are described. The neurological implants possess improved biocompatibility compared to a corresponding neurological implant that lacks the chemical modification. Following implantation in a subject, the surface-modified neurological implants induce a lower-foreign body response, compared to a corresponding unmodified product.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: May 3, 2022
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, SEATTLE CHILDREN'S HOSPITAL
    Inventors: Omid Veiseh, Robert S. Langer, Daniel G. Anderson, William Shain, Brian W. Hanak, Samuel R. Browd, Robert F. Hevner
  • Patent number: 11307197
    Abstract: Polyarginine-coated nanoparticle, and methods for making and using the nanoparticle. The nanoparticle can have a core that includes a material that imparts magnetic resonance imaging activity to the particle and, optionally, include one or more of an associated therapeutic agent, targeting agent, and diagnostic agent.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: April 19, 2022
    Assignee: University of Washington
    Inventors: Miqin Zhang, Omid Veiseh, Chen Fang, Forrest Kievit
  • Patent number: 11266606
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 8, 2022
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Arturo J. Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Publication number: 20220042100
    Abstract: Provided herein are methods for quantifying foreign cell-free DNA (cfDNA) via SNP profiling of low-volume blood sample. The methods allow for monitoring the status of organ transplant rejection through analysis of small volumes of patient capillary blood samples collected non-invasively with fingersticks or other devices. The methods also allow for guiding the dosage of immunosuppressant and for preparing for a new organ transplant in case of imminent organ failure.
    Type: Application
    Filed: December 5, 2019
    Publication date: February 10, 2022
    Inventors: David Yu ZHANG, Xi CHEN, Omid VEISEH, Peng DAI, Kerou ZHANG
  • Publication number: 20220031913
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Application
    Filed: July 15, 2021
    Publication date: February 3, 2022
    Inventors: Arturo Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Publication number: 20220000789
    Abstract: Described herein are implantable devices comprising means for mitigating the foreign body response (FBR) and at least one cell-containing compartment which comprises a plurality of cells (e.g., live cells) encapsulated in a polymer composition comprising a cell-binding substance (CBS), as well as compositions and methods of making and using the same. The cells are capable of expressing a therapeutic agent useful for the treatment of a disease, disorder, or condition described herein.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 6, 2022
    Inventors: Lauren Emily Barney, Michael Beauregard, Guillaume Carmona, Francisco Caballero Gonzalez, Richard Heidebrecht, Erika Ellen Johnston, Robert James Miller, Owen O'Connor, Matthias Alexander Oberli, David Peritt, Jared A. Sewell, Devyn McKinley Smith, Omid Veiseh, Paul Kevin Wotton, Zoe Yin
  • Publication number: 20210353781
    Abstract: Surface-modified cell containing a cell and a conformal coating on the extracellular surface of the cell are described. The conformal coating contains two or more layers containing particles (e.g. nanoparticles) or macromolecules. The cell is an islet cell, a B cell, or a T cell. The macromolecules or particles are formed from zwitterionic polymers. Covalent linkages are employed to link the particles or macromolecules to a cell surface molecule containing an abiotic functional group, or between macromolecules and/or particles in adjacent layers. Also described are methods of making and using a surface-modified cell.
    Type: Application
    Filed: September 23, 2019
    Publication date: November 18, 2021
    Inventors: Omid Veiseh, Volkan Yesilyurt, Andrew Bader, Whitney Loo, Daniel G. Anderson, Robert S. Langer
  • Patent number: 11090413
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: August 17, 2021
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATON
    Inventors: Arturo Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Publication number: 20210145889
    Abstract: Described herein are cell compositions comprising a mesenchymal stem function cell (MSFC), e.g., an engineered MSFC or derivatives thereof, as well as compositions, pharmaceutical products, and implantable elements comprising an MSFC, and methods of making and using the same. The cells and compositions may express a therapeutic agent useful for the treatment of a disease, disorder, or condition described herein.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 20, 2021
    Inventors: Devyn McKinley Smith, David Peritt, Omid Veiseh, Richard Heidebrecht, Robert James Miller
  • Publication number: 20210145759
    Abstract: Described herein are particles comprising a first compartment, a second compartment, and a compound of Formula (I), as well as compositions and methods of making and using the same. The particles may comprise a cell capable of expressing a therapeutic agent useful for the treatment of a disease, disorder, or condition described herein.
    Type: Application
    Filed: March 27, 2019
    Publication date: May 20, 2021
    Inventors: Lauren Emily Barney, Michael Beauregard, Guillaume Carmona, Francisco Caballero Gonzalez, Richard Heidebrecht, Erika Ellen Johnston, Robert James Miller, Matthias Alexander Oberli, Owen O'Connor, David Peritt, Jared A. Sewell, Devyn McKinley Smith, Omid Veiseh, Paul Kevin Wotton
  • Publication number: 20210069100
    Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 11, 2021
    Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
  • Publication number: 20210060205
    Abstract: Described herein are compounds of Formula (I), modified polymers and implantable elements comprising compounds of Formula (II), as well as compositions and methods of use thereof. In particular, the compounds, modified polymers, implantable elements and related compositions may be used in methods for the prevention and treatment of a disease, disorder or condition in a subject.
    Type: Application
    Filed: March 1, 2019
    Publication date: March 4, 2021
    Inventors: Richard Heidebrecht, Robert James Miller, Omid Veiseh
  • Patent number: 10898443
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: January 26, 2021
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Arturo J. Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Patent number: 10835486
    Abstract: Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: November 17, 2020
    Assignees: Massachusetts Institute of Technology, The Children's Medical Center Corporation
    Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Arturo Jose Vegas, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup
  • Patent number: 10786446
    Abstract: Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: September 29, 2020
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Minglin Ma, Daniel G. Anderson, Robert S. Langer, Omid Veiseh, Joshua Charles Doloff, Delai Chen, Christian J. Kastrup, Arturo Jose Vegas
  • Publication number: 20200263196
    Abstract: Described herein are cell compositions comprising an active cell (e.g., an engineered active cell, e.g., an engineered RPE cell) or derivatives thereof, as well as compositions, pharmaceutical products, and implantable elements comprising an active cell, and methods of making and using the same. The cells and compositions may express a therapeutic agent useful for the treatment of a disease, disorder, or condition described herein.
    Type: Application
    Filed: September 27, 2018
    Publication date: August 20, 2020
    Inventors: Guillaume Carmona, Francisco Caballero Gonzalez, Richard Heidebrecht, Robert James Miller, Matthias Alexander Oberli, David Peritt, Jared A. Sewell, Devyn McKinley Smith, Omid Veiseh, Paul Kevin Wotton