Patents by Inventor Omid Zandi

Omid Zandi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240017290
    Abstract: The present disclosure provides embodiments of processes and methods for stabilizing self-assembled monolayers (SAMs). In the present disclosure, a cyclic vapor deposition process is used to selectively deposit a polymer thin film on a SAM structure formed on a target material. The polymer thin film selectively deposited on the SAM structure stabilizes the SAM structure by: (a) healing defects in the SAM structure and providing blanket coverage over the target material surface, (b) preventing migration of SAM-forming molecules to neighboring non-target surfaces, and (c) increasing the thickness and rigidity of the SAM structure. In one embodiment, sequentially pulsed initiated chemical vapor deposition (spiCVD) is used to selectively deposit the polymer thin film on the SAM structure.
    Type: Application
    Filed: July 18, 2022
    Publication date: January 18, 2024
    Inventors: Omid Zandi, Jacques Faguet, Ornella Sathoud
  • Publication number: 20230402276
    Abstract: The present disclosure provides new processes and methods to pre-treat metal surfaces in the back end of line (BEOL) fabrication of integrated circuits (ICs). More specifically, the present disclosure provides selective, self-limiting processes and methods for stripping native oxide surface layers that may form on exposed metal surfaces during processing of ICs. The processes and methods disclosed herein utilize the fundamental concepts of metal complexation to provide a novel solution, which enables native oxide surface layers to be selectively removed from exposed metal films in a self-limiting manner. In particular, the disclosed processes and methods use complexing agents (e.g., ligands) to selectively dissolve native oxide surface layers, without significantly etching or removing the underlying metal film.
    Type: Application
    Filed: June 13, 2022
    Publication date: December 14, 2023
    Inventors: Omid Zandi, Paul Abel, Mengistie Debasu
  • Patent number: 11691175
    Abstract: The present disclosure provides embodiments of improved area-selective deposition (ASD) processes and methods for selectively depositing polymer films on a variety of different target material. More specifically, the present disclosure provides improved ASD processes and related methods that use a cyclic vapor deposition process, which sequentially exposes a surface of a substrate to a polymer precursor followed by an initiator to selectively deposit a polymer thin film on a target material exposed on the substrate surface. The process of sequentially exposing the substrate surface to the precursor and the initiator can be repeated for one or more cycles of the cyclic vapor deposition process until a predetermined thickness of the polymer thin film is selectively deposited on the target material. In one embodiment, sequentially pulsed initiated chemical vapor deposition (spiCVD) is used to selectively deposit the polymer thin film on the target material.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: July 4, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Omid Zandi, Jacques Faguet, Ornella Sathoud
  • Publication number: 20220254683
    Abstract: A method for removal of stray Ru metal nuclei for selective Ru metal layer formation includes depositing ruthenium (Ru) metal on a patterned substrate by vapor phase deposition, where a Ru metal layer is deposited on a surface of a metal layer and Ru metal nuclei are deposited on a surface of a dielectric layer. The method further includes removing the Ru metal nuclei by gas phase etching using an ozone (O3) gas exposure that forms volatile ruthenium oxide species by oxidation of the Ru metal nuclei, and repeating the depositing and removing steps at least once to increase a thickness of the Ru metal layer, where the depositing is interrupted before the Ru metal nuclei reach a critical size that results in formation of non-volatile ruthenium oxide species and incomplete removal of the Ru metal nuclei during the gas phase etching.
    Type: Application
    Filed: January 12, 2022
    Publication date: August 11, 2022
    Inventors: Omid Zandi, Jacques Faguet, David Zywotko, Steven M. George
  • Publication number: 20220139776
    Abstract: A method for filling recessed features with a low-resistivity metal includes providing a patterned substrate containing a recessed feature formed in a first layer and a second layer that is exposed in the recessed feature, pre-treating the substrate with a surface modifier that increases metal deposition selectivity on the second layer relative to on the first layer, and depositing a metal layer on the substrate by vapor phase deposition, where the metal layer is preferentially deposited on the second layer in the recessed feature. The method further includes removing metal nuclei deposited on the first layer, including on a field area and on sidewalls of the first layer in the recessed feature, to selectively form the metal layer on the second layer in the recessed feature, where the removing includes exposing the patterned substrate to an etching gas containing ozone.
    Type: Application
    Filed: October 21, 2021
    Publication date: May 5, 2022
    Inventors: Kai-Hung Yu, David L. O'Meara, Hisashi Higuchi, Hirokazu Aizawa, Omid Zandi, Cory Wajda, Gerrit J. Leusink
  • Publication number: 20210242031
    Abstract: Method for selective etching of materials using an ultrathin etch stop layer (ESL), where the ESL is effective at a thickness as small as approximately one monolayer using atomic layer etching (ALE). A substrate processing method includes depositing a first film on a substrate, depositing a second film on the first film, and selectively etching the second film relative to the first film using an ALE process, where the etching self-terminates at an interface of the second film and the first film.
    Type: Application
    Filed: February 1, 2021
    Publication date: August 5, 2021
    Inventors: Omid Zandi, Paul Abel, Jacques Faguet, David Zywotko, Steven M. George
  • Patent number: 10896824
    Abstract: Methods are disclosed that illuminate etch solutions to provide controlled etching of materials. An etch solution (e.g., gaseous, liquid, or combination thereof) with a first level of reactants is applied to the surface of a material to be etched. The etch solution is illuminated to cause the etch solution to have a second level of reactants that is greater than the first level. The surface of the material is modified (e.g., oxidized) with the illuminated etch solution, and the modified layer of material is removed. The exposing and removing can be repeated or cycled to etch the material. Further, for oxidation/dissolution embodiments the oxidation and dissolution can occur simultaneously, and the oxidation rate can be greater than the dissolution rate. The material can be a polycrystalline material, a polycrystalline metal, and/or other material. One etch solution can include hydrogen peroxide that is illuminated to form hydroxyl radicals.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: January 19, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Omid Zandi, Jacques Faguet
  • Patent number: 10867815
    Abstract: A method and a system for etching of semiconductor substrates, and particularly, wet etching of wafers. The etch rate of liquid solutions applied on the wafer is adjusted by irradiating the liquid solutions with spatially varied light intensity. Photo-reactive agents are added to the liquid solutions, the agents including photo acids, photo bases and photo-oxidizers. Illumination of the photo-reactive agents causes increase/decrease of the pH value and oxidation potential value of the liquid solutions.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: December 15, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Paul Abel, Omid Zandi
  • Patent number: 10818512
    Abstract: Methods and systems herein enable selective removal of ruthenium (Ru) metal at high throughput, and without potentially damaging effects of plasma. Techniques include a photo-assisted chemical vapor etch (PCVE) method to selectively remove Ru metal as a volatile species. A substrate with ruthenium surfaces is positioned within a processing chamber. A photo-oxidizer is received in vapor form in the processing chamber. The photo-oxidizer is a species that generates reactive oxygen species in response to actinic radiation. Reactive oxygen species are then generated by irradiation of the photo-oxidizer, such as with ultraviolet radiation. The reactive oxygen species react with ruthenium surfaces causing the ruthenium surfaces to become oxidized. Oxidized ruthenium is then removed from the substrate, such as be vaporization.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: October 27, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Omid Zandi, Jacques Faguet
  • Publication number: 20200243346
    Abstract: Methods and systems herein enable selective removal of ruthenium (Ru) metal at high throughput, and without potentially damaging effects of plasma. Techniques include a photo-assisted chemical vapor etch (PCVE) method to selectively remove Ru metal as a volatile species. A substrate with ruthenium surfaces is positioned within a processing chamber. A photo-oxidizer is received in vapor form in the processing chamber. The photo-oxidizer is a species that generates reactive oxygen species in response to actinic radiation. Reactive oxygen species are then generated by irradiation of the photo-oxidizer, such as with ultraviolet radiation. The reactive oxygen species react with ruthenium surfaces causing the ruthenium surfaces to become oxidized. Oxidized ruthenium is then removed from the substrate, such as be vaporization.
    Type: Application
    Filed: January 27, 2020
    Publication date: July 30, 2020
    Inventors: Omid Zandi, Jacques Faguet
  • Publication number: 20200194278
    Abstract: Methods are disclosed that illuminate etch solutions to provide controlled etching of materials. An etch solution (e.g., gaseous, liquid, or combination thereof) with a first level of reactants is applied to the surface of a material to be etched. The etch solution is illuminated to cause the etch solution to have a second level of reactants that is greater than the first level. The surface of the material is modified (e.g., oxidized) with the illuminated etch solution, and the modified layer of material is removed. The exposing and removing can be repeated or cycled to etch the material. Further, for oxidation/dissolution embodiments the oxidation and dissolution can occur simultaneously, and the oxidation rate can be greater than the dissolution rate. The material can be a polycrystalline material, a polycrystalline metal, and/or other material. One etch solution can include hydrogen peroxide that is illuminated to form hydroxyl radicals.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 18, 2020
    Inventors: Omid Zandi, Jacques Faguet
  • Publication number: 20200075358
    Abstract: A method and a system for etching of semiconductor substrates, and particularly, wet etching of wafers. The etch rate of liquid solutions applied on the wafer is adjusted by irradiating the liquid solutions with spatially varied light intensity. Photo-reactive agents are added to the liquid solutions, the agents including photo acids, photo bases and photo-oxidizers. Illumination of the photo-reactive agents causes increase/decrease of the pH value and oxidation potential value of the liquid solutions.
    Type: Application
    Filed: August 22, 2019
    Publication date: March 5, 2020
    Applicant: Tokyo Electron Limited
    Inventors: Paul ABEL, Omid ZANDI
  • Publication number: 20200075351
    Abstract: Processing system and platform embodiments are described that illuminate etch solutions to provide controlled etching of materials. The processing systems and platforms deposit a liquid etch solution over a material to be etched and illuminate the liquid etch solution to adjust levels of reactants. The liquid etch solution has a first level of reactants, and the illumination causes the liquid etch solution to have a second level of reactants that is different than the first level. The material is modified with the illuminated etch solution, and the modified material is removed. The delivery, exposing, and removing can be repeated to provide a cyclic etch. Further, oxidation and dissolution can occur simultaneously or can occur in multiple steps. The material being etched can be a polycrystalline material, a polycrystalline metal, and/or other material. One liquid etch solution can include hydrogen peroxide that is illuminated to form hydroxyl radicals.
    Type: Application
    Filed: May 3, 2019
    Publication date: March 5, 2020
    Inventors: Omid Zandi, Jacques Faguet