Patents by Inventor Omidreza Moghbeli

Omidreza Moghbeli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220397459
    Abstract: A Modified Rectangular Wave Polarization Control (MRWPC) system generates an automatically adjustable rectangular wave to optimize polarization of electrodes in relative electrolytes by decreasing the concentration polarization effect. The MRWPC system provides corrosion mitigation for metallic structures in corrosive environments, battery rejuvenation/rapid charging, enhancements in the electroplating process, and other procedures that utilize electrochemical reactions.
    Type: Application
    Filed: June 9, 2022
    Publication date: December 15, 2022
    Inventors: Omidreza Moghbeli, Ian Budner, Madjid Pahlevany, Sebastian Borucki
  • Patent number: 10577697
    Abstract: An enhanced anode includes a modulated body which improves anode current output efficiency by maximizing the surface area to increase surface area to weight ratio. A toroidally modulated embodiment of the enhanced anode enlarges surface area by 48 percent increasing current output efficiency by 48 percent, only increases weight by three percent, and improves surface/weight ratio 44 percent, compared to know cylindrical anodes. The enhanced anode is preferably made from cast iron or other suitable materials (e.g. magnesium, zinc, aluminum) as well, and the design of the improved anode is applicable to galvanic cast anodes in general. The enhanced anode is suitable for molding and casting and does not increase production costs.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: March 3, 2020
    Inventor: Omidreza Moghbeli
  • Patent number: 10428430
    Abstract: An improved marine anode sled comprises a single piece casting with high surface to weight ratio providing increased active surfaces and improved reliability. In one embodiment the anode weighs about 2,000 lbs and has an active surface area of about 5,000 square inches and a current output capacity of up to 160 amps. The improved anode has considerably higher current output than existing anode sleds with similar weight. Unlike known anode sleds, the entire exposed surface of new anode sled is anode material and passes current to a surrounding medium. The single piece casting eliminates structural failure when a frame of know anode sleds is damaged, and electrical failure when cables connecting multiple anodes are damaged. Two redundant lead cable are attached proximal to opposite corners to optimize reliability and electrical performance.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: October 1, 2019
    Inventor: Omidreza Moghbeli
  • Patent number: 10017864
    Abstract: An automated tank Cathodic/Corrosion Protection (CCP) monitoring system includes a mobile CCP data collection device. The data collection device can be moved horizontally to different locations in the tank. A reference electrode and corrosion coupon are lowered from the data collection device to desired depths within a liquid medium in the tank to collect data. The data collection device is connected to a programmable, external control unit enabling a operator to program a data collection schedule, the horizontal and vertical distance between readings, interruption of the system if the system is designed in a way to handle interruption, and has the ability to transmit the data remotely to a control center. These capabilities enable automated, remote monitoring of the CCP system, eliminate the safety concerns associated with sending technicians onto tank roofs, and give a more accurate and complete representation of the CCP system functionality and level of protection achieved.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: July 10, 2018
    Inventors: Omidreza Moghbeli, Sebastian Borucki
  • Publication number: 20180066369
    Abstract: An enhanced anode includes a modulated body which improves anode current output efficiency by maximizing the surface area to increase surface area to weight ratio. A toroidally modulated embodiment of the enhanced anode enlarges surface area by 48 percent increasing current output efficiency by 48 percent, only increases weight by three percent, and improves surface/weight ratio 44 percent, compared to know cylindrical anodes. The enhanced anode is preferably made from cast iron or other suitable materials (e.g. magnesium, zinc, aluminum) as well, and the design of the improved anode is applicable to galvanic cast anodes in general. The enhanced anode is suitable for molding and casting and does not increase production costs.
    Type: Application
    Filed: August 31, 2017
    Publication date: March 8, 2018
    Inventor: Omidreza Moghbeli
  • Publication number: 20180066368
    Abstract: An improved marine anode sled comprises a single piece casting with high surface to weight ratio providing increased active surfaces and improved reliability. In one embodiment the anode weighs about 2,000 lbs and has an active surface area of about 5,000 square inches and a current output capacity of up to 160 amps. The improved anode has considerably higher current output than existing anode sleds with similar weight. Unlike known anode sleds, the entire exposed surface of new anode sled is anode material and passes current to a surrounding medium. The single piece casting eliminates structural failure when a frame of know anode sleds is damaged, and electrical failure when cables connecting multiple anodes are damaged. Two redundant lead cable are attached proximal to opposite corners to optimize reliability and electrical performance.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 8, 2018
    Inventor: Omidreza Moghbeli
  • Patent number: 9774105
    Abstract: An embedded Alternating Current (AC) mitigation system reduces or eliminates induced AC currents on pipelines. When a pipeline runs parallel to power lines, the AC current in the power lines induces AC current in the pipeline. Known coatings applied to the pipelines provides electrical insulation and result in a dangerous or destructive buildup of AC voltage in the pipeline. A combination of the pipeline, a dielectric, and a plate, forms a capacitor. The dielectric may be a coating on the pipe, or a dielectric material deposited on the pipeline and under the plate. The capacitor acts as a decoupler by transmitting AC current to the ground while preserving DC current on the pipeline. The embedded AC mitigation system will further act as grounding system and eliminate the need of adding a grounding system.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: September 26, 2017
    Inventors: Omidreza Moghbeli, Ian Budner
  • Publication number: 20160348255
    Abstract: An automated tank Cathodic/Corrosion Protection (CCP) monitoring system includes a mobile CCP data collection device. The data collection device can be moved horizontally to different locations in the tank. A reference electrode and corrosion coupon are lowered from the data collection device to desired depths within a liquid medium in the tank to collect data. The data collection device is connected to a programmable, external control unit enabling a operator to program a data collection schedule, the horizontal and vertical distance between readings, interruption of the system if the system is designed in a way to handle interruption, and has the ability to transmit the data remotely to a control center. These capabilities enable automated, remote monitoring of the CCP system, eliminate the safety concerns associated with sending technicians onto tank roofs, and give a more accurate and complete representation of the CCP system functionality and level of protection achieved.
    Type: Application
    Filed: May 11, 2016
    Publication date: December 1, 2016
    Inventors: Omidreza Moghbeli, Sebastian Borucki
  • Publication number: 20160308290
    Abstract: An embedded Alternating Current (AC) mitigation system reduces or eliminates induced AC currents on pipelines. When a pipeline runs parallel to power lines, the AC current in the power lines induces AC current in the pipeline. Known coatings applied to the pipelines provides electrical insulation and result in a dangerous or destructive buildup of AC voltage in the pipeline. A combination of the pipeline, a dielectric, and a plate, forms a capacitor. The dielectric may be a coating on the pipe, or a dielectric material deposited on the pipeline and under the plate. The capacitor acts as a decoupler by transmitting AC current to the ground while preserving DC current on the pipeline. The embedded AC mitigation system will further act as grounding system and eliminate the need of adding a grounding system.
    Type: Application
    Filed: March 29, 2016
    Publication date: October 20, 2016
    Inventors: Omidreza Moghbeli, Ian Budner
  • Patent number: 8828195
    Abstract: A Segmented Sacrificial Anode Assembly (SSAA) includes anode segments made from an anodic material containing an electrically conductive core with electrically conductive threaded female connectors at each end, Glass Reinforced Epoxy (GRE) isolators, and male threaded connectors. A number of the anode segments are connected by short male threaded connectors. A long male connector reaching through the isolator is used when connecting the SSAAs to a standing structure and an electrical cable is used to connect the SSAAs to a buried structure. An electrical lead is attached to a threaded post using pin brazing or Cadweld® and the threaded post is threaded into a recessed end threaded female connector of the SSAA. The recess is filled with two part epoxy. The anode segments may be selected from long, medium, and short anode segments to scale the SSAA for any given application.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: September 9, 2014
    Inventor: Omidreza Moghbeli
  • Patent number: 8821698
    Abstract: A multi purpose segmented Titanium Mixed Metal Oxide coated impressed current cathodic protection anode assembly (Ti MMO anode assembly). The Ti MMO anode assembly includes combinations selected from four anode components and four connection components. The various components may be assembled for different applications in liquid or soil environments for the prevention or reduction of corrosion and loss of structural integrity. For example, the Ti MMO anode assembly may be applied to protect pipelines, buried structures, piers and internal surface protection of tanks and vessels in different arrangements such as deep wells, shallow ground beds, or distributed individual anodes.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: September 2, 2014
    Inventor: Omidreza Moghbeli
  • Publication number: 20120031751
    Abstract: A multi purpose segmented Titanium Mixed Metal Oxide coated impressed current cathodic protection anode assembly (Ti MMO anode assembly). The Ti MMO anode assembly includes combinations selected from four anode components and four connection components. The various components may be assembled for different applications in liquid or soil environments for the prevention or reduction of corrosion and loss of structural integrity. For example, the Ti MMO anode assembly may be applied to protect pipelines, buried structures, piers and internal surface protection of tanks and vessels in different arrangements such as deep wells, shallow ground beds, or distributed individual anodes.
    Type: Application
    Filed: July 27, 2011
    Publication date: February 9, 2012
    Inventor: Omidreza Moghbeli
  • Publication number: 20120031750
    Abstract: A Segmented Sacrificial Anode Assembly (SSAA) includes anode segments made from an anodic material containing an electrically conductive core with electrically conductive threaded female connectors at each end, Glass Reinforced Epoxy (GRE) isolators, and male threaded connectors. A number of the anode segments are connected by short male threaded connectors. A long male connector reaching through the isolator is used when connecting the SSAAs to a standing structure and an electrical cable is used to connect the SSAAs to a buried structure. An electrical lead is attached to a threaded post using pin brazing or Cadweld® and the threaded post is threaded into a recessed end threaded female connector of the SSAA. The recess is filled with two part epoxy. The anode segments may be selected from long, medium, and short anode segments to scale the SSAA for any given application.
    Type: Application
    Filed: July 27, 2011
    Publication date: February 9, 2012
    Inventor: Omidreza Moghbeli