Patents by Inventor Omkaram Nalamasu

Omkaram Nalamasu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8747942
    Abstract: Solar cells are provided with carbon nanotubes (CNTs) which are used: to define a micron/sub-micron geometry of the solar cells; and/or as charge transporters for efficiently removing charge carriers from the absorber layer to reduce the rate of electron-hole recombination in the absorber layer. A solar cell may comprise: a substrate; a multiplicity of areas of metal catalyst on the surface of the substrate; a multiplicity of carbon nanotube bundles formed on the multiplicity of areas of metal catalyst, each bundle including carbon nanotubes aligned roughly perpendicular to the surface of the substrate; and a photoactive solar cell layer formed over the carbon nanotube bundles and exposed surfaces of the substrate, wherein the photoactive solar cell layer is continuous over the carbon nanotube bundles and the exposed surfaces of the substrate.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: June 10, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Omkaram Nalamasu, Charles Gay, Victor L. Pushparaj, Kaushal K. Singh, Robert J. Visser, Majeed A. Foad, Ralf Hofmann
  • Patent number: 8736947
    Abstract: The present invention generally relates to electrochromic (EC) devices, such as used in electrochromic windows (ECWs), and their manufacture. The EC devices may comprise a transparent substrate; a first transparent conductive layer; a doped coloration layer, wherein the coloration layer dopants provide structural stability to the arrangement of atoms in the coloration layer; an electrolyte layer; a doped anode layer over said electrolyte layer, wherein the anode layer dopant provides increased electrically conductivity in the doped anode layer; and a second transparent conductive layer. A method of fabricating an electrochromic device may comprise depositing on a substrate, in sequence, a first transparent conductive layer, a doped coloration layer, an electrolyte layer, a doped anode layer, and a second transparent conductive layer, wherein at least one of the doped coloration layer, the electrolyte layer and the doped anode layer is sputter deposited using a combinatorial plasma deposition process.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 27, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Byung-Sung Leo Kwak, Kaushal K. Singh, Joseph G. Gordon, II, Omkaram Nalamasu
  • Patent number: 8709706
    Abstract: The present invention provides methods and an apparatus controlling and minimizing process defects in a development process, and modifying line width roughness (LWR) of a photoresist layer after the development process, and maintaining good profile control during subsequent etching processes. In one embodiment, a method for forming features on a substrate includes developing and removing exposed areas in the photosensitive layer disposed on the substrate in the electron processing chamber by predominantly using electrons, removing contaminants from the substrate by predominantly using electrons, and etching the non-photosensitive polymer layer exposed by the developed photosensitive layer in the electron processing chamber by predominantly using electrons.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 29, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Banqiu Wu, Ajay Kumar, Kartik Ramaswamy, Omkaram Nalamasu
  • Publication number: 20140083363
    Abstract: A method for patterning a magnetic thin film on a substrate includes: providing a pattern about the magnetic thin film, with selective regions of the pattern permitting penetration of energized ions of one or more elements. Energized ions are generated with sufficient energy to penetrate selective regions and a portion of the magnetic thin film adjacent the selective regions. The substrate is placed to receive the energized ions. The portion of the magnetic thin film is subjected to thermal excitation. The portions of the magnetic thin film are rendered to exhibit a magnetic property different than selective other portions. A method for patterning a magnetic media with a magnetic thin film on both sides of the media is also disclosed.
    Type: Application
    Filed: October 7, 2013
    Publication date: March 27, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Omkaram NALAMASU, Steven VERHAVERBEKE, Majeed A. FOAD, Mahalingam VENKATESAN, Nety M. KRISHNA
  • Publication number: 20140072876
    Abstract: Embodiments of the present invention generally relate to methods and apparatus for forming an energy storage device. More particularly, embodiments described herein relate to methods of forming electric batteries and electrochemical capacitors. In one embodiment a method of forming a high surface area electrode for use in an energy storage device is provided. The method comprises forming an amorphous silicon layer on a current collector having a conductive surface, immersing the amorphous silicon layer in an electrolytic solution to form a series of interconnected pores in the amorphous silicon layer, and forming carbon nanotubes within the series of interconnected pores of the amorphous silicon layer.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 13, 2014
    Inventors: Victor L. PUSHPARAJ, Omkaram NALAMASU, Steven VERHAVERBEKE
  • Publication number: 20140045103
    Abstract: Methods for providing a silicon layer on a photomask substrate surface with minimum defeats for fabricating film stack thereon for EUVL applications are provided. In one embodiment, a method for forming a silicon layer on a photomask substrate includes performing an oxidation process to form a silicon oxide layer on a surface of a first substrate wherein the first substrate comprises a crystalline silicon material, performing an ion implantation process to define a cleavage plane in the first substrate, and bonding the silicon oxide layer to a surface of a second substrate, wherein the second substrate is a quartz photomask.
    Type: Application
    Filed: February 22, 2013
    Publication date: February 13, 2014
    Inventors: Banqiu Wu, Ajay Kumar, Omkaram Nalamasu
  • Publication number: 20140017518
    Abstract: A method for patterning a magnetic thin film on a substrate includes: providing a pattern about the magnetic thin film, with selective regions of the pattern permitting penetration of energized ions of one or more elements. Energized ions are generated with sufficient energy to penetrate selective regions and a portion of the magnetic thin film adjacent the selective regions. The substrate is placed to receive the energized ions. The portions of the magnetic thin film are rendered to exhibit a magnetic property different than selective other portions. A method for patterning a magnetic media with a magnetic thin film on both sides of the media is also disclosed.
    Type: Application
    Filed: September 17, 2013
    Publication date: January 16, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Steven VERHAVERBEKE, Omkaram NALAMASU, Majeed A. FOAD, Mahalingam VENKATESAN, Nety M. KRISHNA
  • Patent number: 8603195
    Abstract: Methods and apparatus for forming energy storage devices are provided. In one embodiment a method of producing an energy storage device is provided. The method comprises positioning an anodic current collector into a processing region, depositing one or more three-dimensional electrodes separated by a finite distance on a surface of the anodic current collector such that portions of the surface of the anodic current collector remain exposed, depositing a conformal polymeric layer over the anodic current collector and the one or more three-dimensional electrodes using iCVD techniques comprising flowing a gaseous monomer into the processing region, flowing a gaseous initiator into the processing region through a heated filament to form a reactive gas mixture of the gaseous monomer and the gaseous initiator, wherein the heated filament is heated to a temperature between about 300° C. and about 600° C., and depositing a conformal layer of cathodic material over the conformal polymeric layer.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: December 10, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Victor L. Pushparaj, Pravin K. Narwankar, Omkaram Nalamasu
  • Publication number: 20130285065
    Abstract: Fabrication of gallium nitride-based light devices with physical vapor deposition (PVD)-formed aluminum nitride buffer layers is described. Process conditions for a PVD AlN buffer layer are also described. Substrate pretreatments for a PVD aluminum nitride buffer layer are also described. In an example, a method of fabricating a buffer layer above a substrate involves pre-treating a surface of a substrate. The method also involves, subsequently, reactive sputtering an aluminum nitride (AlN) layer on the surface of the substrate from an aluminum-containing target housed in a physical vapor deposition (PVD) chamber with a nitrogen-based gas or plasma.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 31, 2013
    Inventors: Mingwei Zhu, Rongjun Wang, Nag B. Patibandla, Xianmin Tang, Vivek Agrawal, Cheng-Hsiung Tsai, Muhammad Rasheed, Dinesh Saigal, Praburam Gopal Raja, Omkaram Nalamasu, Anantha Subramani
  • Patent number: 8551578
    Abstract: A method for patterning a magnetic thin film on a substrate includes: providing a pattern about the magnetic thin film, with selective regions of the pattern permitting penetration of energized ions of one or more elements. Energized ions are generated with sufficient energy to penetrate selective regions and a portion of the magnetic thin film adjacent the selective regions. The substrate is placed to receive the energized ions. The portion of the magnetic thin film is subjected to thermal excitation. The portions of the magnetic thin film are rendered to exhibit a magnetic property different than selective other portions. A method for patterning a magnetic media with a magnetic thin film on both sides of the media is also disclosed.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: October 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Omkaram Nalamasu, Steven Verhaverbeke, Majeed Foad, Mahalingam Venkatesan, Nety M. Krishna
  • Publication number: 20130255076
    Abstract: Methods of and factories for thin-film battery manufacturing are described. A method includes operations for fabricating a thin-film battery. A factory includes one or more tool sets for fabricating a thin-film battery.
    Type: Application
    Filed: May 21, 2013
    Publication date: October 3, 2013
    Inventors: Byung-Sung Kwak, Stefan Bangert, Dieter Haas, Omkaram Nalamasu
  • Patent number: 8535766
    Abstract: A method for patterning a magnetic thin film on a substrate includes: providing a pattern about the magnetic thin film, with selective regions of the pattern permitting penetration of energized ions of one or more elements. Energized ions are generated with sufficient energy to penetrate selective regions and a portion of the magnetic thin film adjacent the selective regions. The substrate is placed to receive the energized ions. The portions of the magnetic thin film are rendered to exhibit a magnetic property different than selective other portions. A method for patterning a magnetic media with a magnetic thin film on both sides of the media is also disclosed.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: September 17, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Steven Verhaverbeke, Omkaram Nalamasu, Majeed Foad, Mahalingam Venkatesan, Nety M. Krishna
  • Patent number: 8526167
    Abstract: Embodiments of the present invention generally relate to methods and apparatus for forming an energy storage device. More particularly, embodiments described herein relate to methods of forming electric batteries and electrochemical capacitors. In one embodiment a method of forming a high surface area electrode for use in an energy storage device is provided. The method comprises forming an amorphous silicon layer on a current collector having a conductive surface, immersing the amorphous silicon layer in an electrolytic solution to form a series of interconnected pores in the amorphous silicon layer, and forming carbon nanotubes within the series of interconnected pores of the amorphous silicon layer.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: September 3, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Victor L. Pushparaj, Omkaram Nalamasu, Steven Verhaverbeke
  • Publication number: 20130224665
    Abstract: Methods and apparatus for performing an atomic layer deposition lithography process are provided in the present disclosure. In one embodiment, a method for forming features on a material layer in a device includes pulsing a first reactant gas mixture to a surface of a substrate disposed in a processing chamber to form a first monolayer of a material layer on the substrate surface, directing an energetic radiation to treat a first region of the first monolayer, and pulsing a second reactant gas mixture to the substrate surface to selectively form a second monolayer on a second region of the first monolayer.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 29, 2013
    Inventors: Banqiu Wu, Ajay Kumar, Omkaram Nalamasu
  • Publication number: 20130174781
    Abstract: Fabrication of gallium nitride-based light emitting diodes (LEDs) with physical vapor deposition (PVD) formed aluminum nitride buffer layers is described.
    Type: Application
    Filed: March 1, 2013
    Publication date: July 11, 2013
    Inventors: Mingwei Zhu, Vivek Agrawal, Nag B. Patibandla, Omkaram Nalamasu
  • Patent number: 8464419
    Abstract: Methods of and factories for thin-film battery manufacturing are described. A method includes operations for fabricating a thin-film battery. A factory includes one or more tool sets for fabricating a thin-film battery.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: June 18, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Byung-Sung Kwak, Stefan Bangert, Dieter Haas, Omkaram Nalamasu
  • Patent number: 8415556
    Abstract: Methods for fabrication of copper delafossite materials include a low temperature sol-gel process for synthesizing CuBO2 powders, and a pulsed laser deposition (PLD) process for forming thin films of CuBO2, using targets made of the CuBO2 powders. The CuBO2 thin films are optically transparent p-type semiconductor oxide thin films. Devices with CuBO2 thin films include p-type transparent thin film transistors (TTFT) comprising thin film CuBO2 as a channel layer and thin film solar cells with CuBO2 p-layers. Solid state dye sensitized solar cells (SS-DSSC) comprising CuBO2 in various forms, including “core-shell” and “nano-couple” particles, and methods of manufacture, are also described.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: April 9, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Kaushal K. Singh, Omkaram Nalamasu, Nety Krishna, Michael Snure, Ashutosh Tiwari
  • Patent number: 8409895
    Abstract: Fabrication of gallium nitride-based light emitting diodes (LEDs) with physical vapor deposition (PVD) formed aluminum nitride buffer layers is described.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: April 2, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Vivek Agrawal, Nag B. Patibandla, Omkaram Nalamasu
  • Publication number: 20130074771
    Abstract: A method and apparatus are provided for formation of a composite material on a substrate. The composite material includes carbon nanotubes and/or nanofibers, and composite intrinsic and doped silicon structures. In one embodiment, the substrates are in the form of an elongated sheet or web of material, and the apparatus includes supply and take-up rolls to support the web prior to and after formation of the composite materials. The web is guided through various processing chambers to form the composite materials. In another embodiment, the large scale substrates comprise discrete substrates. The discrete substrates are supported on a conveyor system or, alternatively, are handled by robots that route the substrates through the processing chambers to form the composite materials on the substrates. The composite materials are useful in the formation of energy storage devices and/or photovoltaic devices.
    Type: Application
    Filed: November 20, 2012
    Publication date: March 28, 2013
    Inventors: VICTOR L. PUSHPARAJ, Pravin K. Narwankar, Dieter Haas, Bipin Thakur, Mahesh Arcot, Vikas Gujar, Omkaram Nalamasu
  • Publication number: 20120322011
    Abstract: The present invention provides methods and an apparatus controlling and minimizing process defects in a development process, and modifying line width roughness (LWR) of a photoresist layer after the development process, and maintaining good profile control during subsequent etching processes. In one embodiment, a method for forming features on a substrate includes developing and removing exposed areas in the photosensitive layer disposed on the substrate in the electron processing chamber by predominantly using electrons, removing contaminants from the substrate by predominantly using electrons, and etching the non-photosensitive polymer layer exposed by the developed photosensitive layer in the electron processing chamber by predominantly using electrons.
    Type: Application
    Filed: April 25, 2012
    Publication date: December 20, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Banqiu Wu, Ajay Kumar, Kartik Ramaswamy, Omkaram Nalamasu