Patents by Inventor ORB ACTON
ORB ACTON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250113598Abstract: An integrated circuit (IC) device includes n- and p-type transistors with and without threshold voltage shifts using a common dopant material in a gate dielectric. The IC device includes at least four threshold voltage for each of n- and p-type transistors. Besides volumeless doping of gate dielectrics, work function metals are used in both n- and p-type transistors. A single dipole dopant may be concurrently introduced into and through similar gate dielectrics in both n- and p-type transistors to achieve consistent threshold voltage shifts with minimal process variation.Type: ApplicationFiled: September 29, 2023Publication date: April 3, 2025Applicant: Intel CorporationInventors: Dan Lavric, Jubin Nathawat, Orb Acton, Michal Mleczko, Owen Loh, Michael L. Hattendorf
-
Publication number: 20240332394Abstract: Gate-all-around integrated circuit structures having a multi-layer molybdenum metal gate stack are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires, and a second vertical arrangement of horizontal nanowires. A PMOS gate stack is over the first vertical arrangement of horizontal nanowires, the PMOS gate stack having a multi-layer molybdenum structure on a first gate dielectric. An NMOS gate stack is over the second vertical arrangement of horizontal nanowires, the NMOS gate stack having the multi-layer molybdenum structure or an N-type conductive layer on a second gate dielectric.Type: ApplicationFiled: March 31, 2023Publication date: October 3, 2024Inventors: David N. GOLDSTEIN, David J. TOWNER, Dax M. CRUM, Omair SAADAT, Dan S. LAVRIC, Orb ACTON, Tongtawee WACHARASINDHU, Anand S. MURTHY, Tahir GHANI
-
Publication number: 20240290788Abstract: A metal gate fabrication method for nanoribbon-based transistors and associated transistor arrangements, IC structures, and devices are disclosed. An example IC structure fabricated using metal gate fabrication method described herein may include a first stack of N-type nanoribbons, a second stack of P-type nanoribbons, a first gate region enclosing portions of the nanoribbons of the first stack and including an NWF material between adjacent nanoribbons of the first stack, and a second gate region enclosing portions of the nanoribbons of the second stack and including a PWF material between adjacent nanoribbons of the second stack, where the second gate region includes the PWF material at sidewalls of the nanoribbons of the second stack and further includes the NWF material so that the PWF material is between the sidewalls of the nanoribbons of the second stack and the NWF material.Type: ApplicationFiled: February 28, 2023Publication date: August 29, 2024Applicant: Intel CorporationInventors: Guowei Xu, Tao Chu, Chiao-Ti Huang, Robin Chao, David Towner, Orb Acton, Omair Saadat, Feng Zhang, Dax M. Crum, Yang Zhang, Biswajeet Guha, Oleg Golonzka, Anand S. Murthy
-
Patent number: 12051698Abstract: Gate-all-around integrated circuit structures having molybdenum nitride metal gates and gate dielectrics with a dipole layer are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires, and a second vertical arrangement of horizontal nanowires. A first gate stack is over the first vertical arrangement of horizontal nanowires, the first gate stack having a P-type conductive layer on a first gate dielectric. The P-type conductive layer includes molybdenum and nitrogen. A second gate stack is over the second vertical arrangement of horizontal nanowires, the second gate stack having an N-type conductive layer on a second gate dielectric.Type: GrantFiled: September 23, 2020Date of Patent: July 30, 2024Assignee: Intel CorporationInventors: Daniel G. Ouellette, Daniel B. O'Brien, Jeffrey S. Leib, Orb Acton, Lukas Baumgartel, Dan S. Lavric, Dax M. Crum, Oleg Golonzka, Tahir Ghani
-
Patent number: 11996408Abstract: Stacked transistor structures having a conductive interconnect between upper and lower transistors. In an embodiment, the interconnect is formed by first provisioning a protective layer over an area to be protected (gate dielectric or other sensitive material) of upper transistor, and then etching material adjacent and below the protected area to expose an underlying contact point of lower transistor. A metal is deposited into the void created by the etch to provide the interconnect. The protective layer is resistant to the etch process and is preserved in the structure, and in some cases may be utilized as a work-function metal. In an embodiment, the protective layer is formed by deposition of reactive semiconductor and metal material layers which are subsequently transformed into a work function metal or work function metal-containing compound. A remnant of unreacted reactive semiconductor material may be left in structure and collinear with protective layer.Type: GrantFiled: April 21, 2022Date of Patent: May 28, 2024Assignee: Intel CorporationInventors: Aaron D. Lilak, Anh Phan, Ehren Mannebach, Cheng-Ying Huang, Stephanie A. Bojarski, Gilbert Dewey, Orb Acton, Willy Rachmady
-
Publication number: 20230420531Abstract: Gate-all-around integrated circuit structures having common metal gates and having gate dielectrics with a dipole layer are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires, and a second vertical arrangement of horizontal nanowires. A first gate stack is over the first vertical arrangement of horizontal nanowires, the first gate stack a PMOS gate stack having a P-type conductive layer on a first gate dielectric including a first N-type dipole material layer. A second gate stack is over the second vertical arrangement of horizontal nanowires, the second gate stack an NMOS gate stack having the P-type conductive layer on a second gate dielectric including the first N-type dipole material layer and a second N-type dipole material layer.Type: ApplicationFiled: June 27, 2022Publication date: December 28, 2023Inventors: Dan S. LAVRIC, Dax M. CRUM, YenTing CHIU, Orb ACTON, David J. TOWNER, Tahir GHANI
-
Publication number: 20230090092Abstract: An integrated circuit having a transistor architecture includes a first semiconductor body and a second semiconductor body. The first and second semiconductor bodies are arranged vertically (e.g., stacked configuration) or horizontally (e.g., forksheet configuration) with respect to each other, and separated from one another by insulator material, and each can be configured for planar or non-planar transistor topology. A first gate structure is on the first semiconductor body, and includes a first gate electrode and a first high-k gate dielectric. A second gate structure is on the second semiconductor body, and includes a second gate electrode and a second high-k gate dielectric. In an example, the first gate electrode includes a layer comprising a compound of silicon and one or more metals; the second gate structure may include a silicide workfunction layer, or not. In one example, the first gate electrode is n-type, and the second gate electrode is p-type.Type: ApplicationFiled: September 22, 2021Publication date: March 23, 2023Inventors: Aaron D. Lilak, Orb Acton, Cheng-Ying Huang, Gilbert Dewey, Ehren Mannebach, Anh Phan, Willy Rachmady, Jack T. Kavalieros
-
Publication number: 20220416039Abstract: An integrated circuit structure comprises a first and second vertical arrangement of horizontal nanowires in a PMOS region and in an NMOS region. A first gate stack having a P-type conductive layer surrounds the first vertical arrangement of horizontal nanowires. A second gate stack surrounds the second vertical arrangement of horizontal nanowires. In one embodiment, the second gate stack has an N-type conductive layer, the P-type conductive layer is over the second gate stack, and an N-type conductive fill is between N-type conductive layer and the P-type conductive layer to provide same polarity metal filled gates. In another embodiment, the second gate stack has an N-type conductive layer comprising Titanium (Ti) and “Nitrogen (N) having a low saturation thickness of 3-3.5 nm surrounding the nanowires, and the N-type conductive layer is covered by the P-type conductive layer.Type: ApplicationFiled: June 24, 2021Publication date: December 29, 2022Inventors: Dan S. LAVRIC, Dax M. CRUM, David J. TOWNER, Orb ACTON, Jitendra Kumar JHA, YenTing CHIU, Mohit K. HARAN, Oleg GOLONZKA, Tahir GHANI
-
Patent number: 11476334Abstract: Techniques and mechanisms for providing functionality of a transistor which comprises a conformal layer of a gate work function silicide. In an embodiment, the transistor comprises a channel region and a gate dielectric which extends and adjoins the channel region. The gate dielectric also adjoins a layer structure of the transistor, the layer structure comprising a silicide. The silicide includes silicon and a component D which comprises a non-metal element from one of Groups IIIa, IVa, or Va. In another embodiment, the silicide further comprises a component M which includes a transition metal element from one of Groups IVb, Vb, VIb, VIIB, or VIIIb and/or which includes a metal element from one of Groups IIIa, IVa, or Va.Type: GrantFiled: February 8, 2018Date of Patent: October 18, 2022Assignee: Intel CorporationInventors: Orb Acton, Joseph Steigerwald, Anand Murthy, Scott Maddox, Jenny Hu
-
Publication number: 20220246608Abstract: Stacked transistor structures having a conductive interconnect between upper and lower transistors. In an embodiment, the interconnect is formed by first provisioning a protective layer over an area to be protected (gate dielectric or other sensitive material) of upper transistor, and then etching material adjacent and below the protected area to expose an underlying contact point of lower transistor. A metal is deposited into the void created by the etch to provide the interconnect. The protective layer is resistant to the etch process and is preserved in the structure, and in some cases may be utilized as a work-function metal. In an embodiment, the protective layer is formed by deposition of reactive semiconductor and metal material layers which are subsequently transformed into a work function metal or work function metal-containing compound. A remnant of unreacted reactive semiconductor material may be left in structure and collinear with protective layer.Type: ApplicationFiled: April 21, 2022Publication date: August 4, 2022Inventors: Aaron D. LILAK, Anh PHAN, Ehren MANNEBACH, Cheng-Ying HUANG, Stephanie A. BOJARSKI, Gilbert DEWEY, Orb ACTON, Willy RACHMADY
-
Publication number: 20220199472Abstract: Integrated circuitry comprising high voltage (HV) and low voltage (LV) ribbon or wire (RoW) transistor stack structures. In some examples, a gate electrode of the HV and LV transistor stack structures may include the same work function metal. A metal oxide may be deposited around one or more channels of the HV transistor stack, thereby altering the dipole properties of the gate insulator stack from those of the LV transistor stack structure.Type: ApplicationFiled: December 23, 2020Publication date: June 23, 2022Applicant: Intel CorporationInventors: Robin Chao, Bishwajeet Guha, Brian Greene, Chung-Hsun Lin, Curtis Tsai, Orb Acton
-
Patent number: 11348916Abstract: Stacked transistor structures having a conductive interconnect between upper and lower transistors. In an embodiment, the interconnect is formed by first provisioning a protective layer over an area to be protected (gate dielectric or other sensitive material) of upper transistor, and then etching material adjacent and below the protected area to expose an underlying contact point of lower transistor. A metal is deposited into the void created by the etch to provide the interconnect. The protective layer is resistant to the etch process and is preserved in the structure, and in some cases may be utilized as a work-function metal. In an embodiment, the protective layer is formed by deposition of reactive semiconductor and metal material layers which are subsequently transformed into a work function metal or work function metal-containing compound. A remnant of unreacted reactive semiconductor material may be left in structure and collinear with protective layer.Type: GrantFiled: June 29, 2018Date of Patent: May 31, 2022Assignee: Intel CorporationInventors: Aaron D. Lilak, Anh Phan, Ehren Mannebach, Cheng-Ying Huang, Stephanie A. Bojarski, Gilbert Dewey, Orb Acton, Willy Rachmady
-
Publication number: 20220093597Abstract: Gate-all-around integrated circuit structures having molybdenum nitride metal gates and gate dielectrics with a dipole layer are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires, and a second vertical arrangement of horizontal nanowires. A first gate stack is over the first vertical arrangement of horizontal nanowires, the first gate stack having a P-type conductive layer on a first gate dielectric. The P-type conductive layer includes molybdenum and nitrogen. A second gate stack is over the second vertical arrangement of horizontal nanowires, the second gate stack having an N-type conductive layer on a second gate dielectric.Type: ApplicationFiled: September 23, 2020Publication date: March 24, 2022Inventors: Daniel G. OUELLETTE, Daniel B. O'BRIEN, Jeffrey S. LEIB, Orb ACTON, Lukas BAUMGARTEL, Dan S. LAVRIC, Dax M. CRUM, Oleg GOLONZKA, Tahir GHANI
-
Publication number: 20200343343Abstract: Techniques and mechanisms for providing functionality of a transistor which comprises a conformal layer of a gate work function silicide. In an embodiment, the transistor comprises a channel region and a gate dielectric which extends and adjoins the channel region. The gate dielectric also adjoins a layer structure of the transistor, the layer structure comprising a silicide. The silicide includes silicon and a component D which comprises a non-metal element from one of Groups IIIa, IVa, or Va. In another embodiment, the silicide further comprises a component M which includes a transition metal element from one of Groups IVb, Vb, VIb, VIIB, or VIIIb and/or which includes a metal element from one of Groups IIIa, IVa, or Va.Type: ApplicationFiled: February 8, 2018Publication date: October 29, 2020Applicant: Intel CorporationInventors: Orb Acton, Joseph Steigerwald, Anand Murthy, Scott Maddox, Jenny Hu
-
Publication number: 20200006330Abstract: Stacked transistor structures having a conductive interconnect between upper and lower transistors. In an embodiment, the interconnect is formed by first provisioning a protective layer over an area to be protected (gate dielectric or other sensitive material) of upper transistor, and then etching material adjacent and below the protected area to expose an underlying contact point of lower transistor. A metal is deposited into the void created by the etch to provide the interconnect. The protective layer is resistant to the etch process and is preserved in the structure, and in some cases may be utilized as a work-function metal. In an embodiment, the protective layer is formed by deposition of reactive semiconductor and metal material layers which are subsequently transformed into a work function metal or work function metal-containing compound. A remnant of unreacted reactive semiconductor material may be left in structure and collinear with protective layer.Type: ApplicationFiled: June 29, 2018Publication date: January 2, 2020Applicant: INTEL CORPORATIONInventors: AARON D. LILAK, ANH PHAN, EHREN MANNEBACH, CHENG-YING HUANG, STEPHANIE A. BOJARSKI, GILBERT DEWEY, ORB ACTON, WILLY RACHMADY